Improving the Boiler Efficiency & Coal Usage Reduction in Thermal Power Stations

PV Narendra Kumar,1 Dr Ch.Chengaiyah2, J Leela Krishna3, S. Manoj Prabhakar4,P Prasanna5, P Srinu6

1, 3, 4, 5, 6Department of Electrical & Electronics Engineering, Chalapathi Institute of Engineering & Technology, CIET Autonomous, Lam, Guntur, Andhra Pradesh
2Department of Electrical & Electronics Engineering, Sri Venkateswara University College of Engineering, Tirupati, Andhra Pradesh

Abstract: India, being the world’s third most observable customer and third most essential power producer with relentlessly presented generally sensational of 364.17 GW, contributing 68% of warm Capacity as of 31st October 2019. The dependable report of the International Energy Agency (IEA) shows that general coal use is on the trip again +1.79% show educating trustingly in relationship with 2018. Consequently, Thermal power passing on stations is essential. For the Simhapuri Thermal Power Station (the on reconsidered in the present assessment), it is seen that, for progress in Magnetic substance by 2%, the particular coal use expands by about 8%. Suffering, regardless, the trash content is associated by 2%, the particular coal use expands by about 5%. It is in like way observed that, for a 4% improvement in fixed carbon; the particular coal used diminishes by about 25%. Starting now and into the not all that far off it is proposed to present an interfacing with separator at the bed materials tacking point. With this foundation of pulling in separator gears away early electrical vitality sparing far the splint of 116.14LakhkW hard coal experience resources of 12730 MT. Seen electrical energies peculation accounts works out to be 5.3% of the yearly electrical centrality ate up (2158.9 Lakh kWh) during the year Sep 2018 –Aug2019. Assessed yearly centrality costs paring point of confinement of Rs.769.54 Lakhs (counting coal hold saves) works out to be 8.9% of the yearly significance cost (Rs. 8635.8 Lakhs) for the year Sep 2018 –Aug 2019. The Proposed issue is attempted with MATLAB condition and cost appraisal of warm power plants disengaged and existing making data. The test results exhibited that the proposed structure gives a feasible system beast experienced additional items and essential for suffering assignments

Keywords: Centrality Situation, fluid izedbed, efficiently removes iron particles from material, limit, account between times, MATA LB.

I. INTRODUCTION

As showedupby Central Electricity Office (CEO), in India, 144 thermal plants flooded 8.5 cores gigantic degrees of shooting refuse in the midst of 75% of 2018-19. Around the globe, Fuel resources are decreasing rapidly. Redesigning using the latest enhancements are keeping, reducing the vital fuel resources. Regardless, on the off chance that the fuel use is incomparable controlled, the crushing is purpose of reality going to be discharged up to an impossible level driving way to deal with oversee manage threatening occasions. As the intrigue stores up, age in like way makes inducing more coal use. For development, fuel age plants and encounters are the guaranteed establishments for temperature rise and tainting.

The segues plainly ordinal ulmannersully the combining regions and in that capacity it is un imaginably difficult to live in and around the warm plants [1]. In the going with hundred years, the fuel resources will Diminished unfathomably. The constructed most remote scopes of warm power stations in India are showed up intable 1.1.

Table 1.1: Constructed Capacity of Thermal Power Station

<table>
<thead>
<tr>
<th>Year</th>
<th>Generatedstrength(MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015-16</td>
<td>1,85,000</td>
</tr>
<tr>
<td>2016-17</td>
<td>1,92,000</td>
</tr>
<tr>
<td>2017-18</td>
<td>1,93,000</td>
</tr>
</tbody>
</table>

The propelling report of the International Energy Agency (IEA) shows that general coal use is on the outing again (+1% showed up contrastingly in association with 2017).

This is an upsetting model, considering the course that despite expanding no matter how you look at it perception of the perils of an unnatural natural change in context on ozonedraining substance outpourings, some enormous economies can't substitute their coal based power with less carbon-concentrated energies. Absolutely, coal is pervasively used for control creation, with 66% of world’s use going to control age; this degree moves to seventy five percent China and India, which generally have progressively weeping uses, are denied; the rest of utilization goes to
industry (in general sense steel). Coal remains the most
dirting well spring of centrality: it everything considered
transmits twice as at remand our measurement of CO2 as
burnable gas its fundamental competitor [2-6].Coal remains
the standard vitality source toppas on control. Around the
globe, coal use for control age isn each functional sense
making at a comparative rate as thepower use (2.8%
dependably versus 3% dependably some spot in the degree
of 2000 and 2017). Accordingly, the bit of coal in the
power mix has about remained determined as far back as 20
years around 40%. In spite of whether it has starting late
diminished by two since 2010 as showed up in fig1.1, coal is
starting not very far in the past the mostingeneral used
centrality hotspot for control age on the planet. Close-up,
we see obliging models on the planet's most significant
economies: the undertaking sand statements of the vast
majority of countries that are getting out the use of coal to
make control are being undermined by different countries
that are extending hebito coal in their ability mix.

This is the condition particularly for huge coal-passing
on countries, for instance, Indonesia (58% of intensity
delivered utilizing coal, 18 rate encourages increase from
2010 toward 2017), Turkey (35%+,7)and India(75%,+7 as
showed in Figure1)

India is the second most critical coal producer on earth
after China with basic coal holds. The improvement of
renewable and the supporting of continuously equipped
coal-completed power plants in India are not pleasing to in
gest the progress in charge demand, which has discovered
the center estimation of 7% dependably since 2007. Other
countries are trying to build up their essentialness mix and
are genuinely using coal to make their capacity: Malaysia
(45%, +10), Chile (37%, +9), South Korea (46%, +2) and Japan (33%, +6). These countries
rely on coal for a few reasons: despite routinely being an
inexorably moderate wellspring of power, coal limits their
dependence on oil-and gas-creation countries, and in that
capacity obliges the off Ector hydrocarbon respecting
conventionalties on their economies. By prudence of an on
attendance of private non-reasonable power sorceress ounces,
Japans extraordinary compared to the roll-, ignitable gas and
coil-getting countries. Some spot in the degree of 2011 and
2015, the bit of coal in Japanese power creation loosened up
inside and out to change as per the fruition of nuclear power
plants following the Fukushi madisaster. Finally, couple of
countries with national coals pares, for instance, the
Philippines (half, +15) and Vietnam (34%, +14), are
developing this advantage for give control and to improve the
inessential nests self-organization and parity of payment.

1.1 Specific Coal Consumption and Heat Rate:
Unequivocal coal use is the Quantity required
formaking unit of criticalness. It is depicted as the degree
of Plant Heat Rate by GCV of Coal. Warmth Rate is a term
normally utilized in control stations to show the power
plant ability [3]. The sparkle rate is something contrary to
the productivity: a heat rate is better. While amleness is
dimensionless measure (now and gain referred to in %)
heat rate is ordinarily conferred as Btu/kWh. This is
considering the way that watt hours are much more
typically utilized when hinting electrical vitality and BTU
is considerably more normally utilized when

recommending warm criticalness. Warmth rate as for
control plants can be thought of as the information
expected to passsomeoneuinto yield. It everything considered
shows the extent of fuel required to make one unit of force.
Execution parameters sought after for any warm power
plant like ability, fuel costs, plant load factor, floods level,
and so forth are apiece of the station heat rate and can be
related direct.

1.2 Auxiliary Power Consumption:
There are accomplice's present in the power plant
which helps for the development of plant; help retakes
after (ID, PA, SA/ FD fans, ACW &CW siphons , CEP
.BFP) require voltage 6.6kv for the inactivity. Sods
connected from age wein addition require some voltage to
run our own apparatus called as right hand control use
(APC). Commonly APC is 12–15% of full scale age.

1.3 Plant Load Factor(PLF):
Plant Load Factor is the degree of run of the mill
control conveyed by the plant to the most over the top
power that could have been made for a given time span.
Consequently deductively it will by and large be shaped as,
PLF= Pavg/ Pmax. As it is the degree of same entirety,
thusly it is a unit less quantity. Maximum control Pmax is
at risk to stack. During top weight period a power plant
should work at its most uncommon most distant point.
Plant Load Factor may either be settled on ordinary
schedule, reliably, month to month or early reason In that
capacity, regularly PLFisunder1. Pelican in like way ked
evicted the degree that dignify can cleave by the plant to a
given time designation. Enable us to acknowledge that
were just excited about learning PLF for a time of T. By
then plant load factor PLF= (PavgT)/PmaxT
=Average Energy Supplied /Energy Supplied
everything

Thought about over the top interest Along these lines to
the degree vitality, Plant Load Factor is the degree of run
of the mill criticalness suited an offered time span to the
centrality that could have been given all things considered
conscious stacking condition to a similar time period.
Plant Load Factor is one of the introduction parameter
control plants. It is a level of plant limit use for quite a
while. More the PLF more will be the compensation of the
plant. Of course, higher the PLF, lesser will be cost of per
unit (kWh) vitality made.

II. PROBLEM FORMULATION
For the Simhapuri Thermal Power Station (the on
ecoisidered in the present assessment). The maximum
generating capacity of the generator is 300 MW and
minimum Capacity of each generator is 150 MW.
Generally speaking, the bed material should not to contain
greater than 5% of engaging parts.
Table 2.1: Power age, pass on and coal use subtleties for most recent two years

<table>
<thead>
<tr>
<th>Year</th>
<th>Coal Consumed MT</th>
<th>Generation, MU</th>
<th>Export, MU</th>
<th>Plant Load Factor, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit-1 May 18-April 19</td>
<td>62701 1</td>
<td>955.9 5</td>
<td>848.73</td>
<td>83</td>
</tr>
<tr>
<td>Unit-2 July 18-June 19</td>
<td>5601 4</td>
<td>851.07 1</td>
<td>757.6</td>
<td>68</td>
</tr>
<tr>
<td>Unit-2 July 19-August 19</td>
<td>12735 6</td>
<td>199.76 8</td>
<td>179.6 6</td>
<td>93</td>
</tr>
</tbody>
</table>

In the event that an engaging fragment in the bed material structures, at that point acceptable warmth can't be kept up in the radiator, developing the stoppages, and utilization of coal and particularly influencing the evaporator life. An applicable assessment facilitated on the first and second generator's pit covered that the ability of the evaporator was diminished to 83.50% and 83.01% from arranged efficiency of 86.26% respectively. Table 2.2 underneath shows the sorted out qualities and ensured estimations of the glow pace of a unit, and sufficiency of radiator.

Table 2.2: Theoretical and Practical values of a Boiler

<table>
<thead>
<tr>
<th>Description</th>
<th>Theoretical Values</th>
<th>Practical Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit-1, Boiler Efficiency</td>
<td>86.26%</td>
<td>83.50%</td>
</tr>
<tr>
<td>Unit-2, Boiler Efficiency</td>
<td>86.26%</td>
<td>83.01%</td>
</tr>
<tr>
<td>Unit-1, Unit Rate</td>
<td>2585.64</td>
<td>3109</td>
</tr>
<tr>
<td>Unit-2, Unit Rate</td>
<td>2588.77</td>
<td>3207</td>
</tr>
</tbody>
</table>

In perspective on appealing sections available in the bed material, extraordinary proportion of Coal 0.6401 Kg/Kwh and 0.6409 Kg/Kwh is used to make one unit of Power for Fig 2.1 Capacity Utilization and their Auxiliary Power Consumption for the time of August 2018 to August 2019 of Unit-1 and Unit-2 independently. During the estimation time period, load on the Unit-1 and Unit-2 was around 144.96 MW and 146.18 MW independently.

Table 2.3: Specific coal Consumption nuances

<table>
<thead>
<tr>
<th>Year 2019 (Jan–Aug)</th>
<th>Avg. Specific Coal Consumption, Kg/KWh</th>
<th>Capacity Utilization, % Min Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit-1</td>
<td>0.6401</td>
<td>55</td>
</tr>
<tr>
<td>Unit-2</td>
<td>0.6409</td>
<td>53</td>
</tr>
</tbody>
</table>

2.1 Details of Boilers

The power plant involves two amounts of 150 MW coal based generators. The Boilers is of circulating fluidized bed consuming (CFBC) type with transitional radiator [4]. The evaporator has capacity to deliver 500TPH steam at 137 kg/cm2 (for superheated steam). The short detail of the evaporator or is given in table 2.5 First generator and second generator independently. Regardless, the use of coal is to be diminished as low as would be reasonable. Express coal use nuances are showed up in table 2.3.
The display evaluation of evaporator of the two units was done by testing the pot profitability by under handed procedure. In the quick methodology hoes essentialness increment of the water to change over in to steam is differentiated and the imperativeness commitment through coal, while if the refought to emerge an even to find erect system, the capability is assessed by deducting various disasters from the data imperativeness through coal. During the testing time allotments careen diver complexityandstructureparameters.Inlikemanner,assessedthefunnelgastemperatureandO₂,CO₂atvariousterritories,for instance, economizer delta, outlet, Air pre hotter sound and outlet. Nuances of the conscious parameters are given in the table 2.7.

III. PROPOSEDMETHOD

It is expected to install an efficiently removes iron particles from material at the unloading point. Here, the Generating station, each potent visions that 4 should 6 Tons of bed material reliably making it to 8 to 10 Tons for two boilers. Everything thought constantly, around 220 to 350 Tons of bed materials required by two generators.

![Flow Diagram of Proposed Machine](image)

The assessment focused on improving essentialness use adequacy and perceiving imperativeness ayingopenentry ways atvariousrigging. The examinations included fundamental compensation estimations where theories are required to be made to realize proposals, to develop their monetary common sense. The line frame work of the expected thing is shown in fig3.

![Table3.2: cost of a Magnetic separator](image)

<table>
<thead>
<tr>
<th>S.No</th>
<th>Explanation</th>
<th>Cost(Rs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Machine</td>
<td>16,31,899.00</td>
</tr>
<tr>
<td>2.</td>
<td>Constructional things</td>
<td>4,00,000.00</td>
</tr>
<tr>
<td>3.</td>
<td>Erectionmaterial</td>
<td>20,655.00</td>
</tr>
<tr>
<td>4.</td>
<td>Wagesforworkers</td>
<td>3,89,982.00</td>
</tr>
<tr>
<td>5.</td>
<td>Operation &Maintenance</td>
<td>2,00,000.00</td>
</tr>
<tr>
<td>Sum:</td>
<td></td>
<td>26,42,536.00</td>
</tr>
</tbody>
</table>

Installation of efficiently removes iron particles developing significant occurrences.

![Table3.3: Payback period](image)

<table>
<thead>
<tr>
<th>S.NO</th>
<th>FluidizedMaterial (Tons)</th>
<th>MagneticProperties</th>
<th>Cost(Rs.)</th>
<th>PaybackTime(Months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5840</td>
<td>14,60,00</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>7.5</td>
<td>21,90,00</td>
<td>0</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>29,20,00</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>6570</td>
<td>16,42,50</td>
<td>0</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>7.5</td>
<td>24,63,75</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>32,85,00</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>7300</td>
<td>18,25,00</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>7.5</td>
<td>27,37,50</td>
<td>0</td>
<td>11</td>
</tr>
</tbody>
</table>

By greatness of the engaging parts in the bed material, satisfactory warmth can't be kept up in the evaporator, causing widened stoppages and by building up the usage of coal and less ending the life of the pot.

IV. RESULTS AND DISCUSSION

This bed material other than urges us to diminish isolating evaporator tubes. With this foundation of enchanting separator gear, all the additionally sizzling practical insight can be loose up to 2.1% i.e., from 83.50% to 85.60% more for first generator and from 83.01% to 85.21% more for second generator, tokeepupthecustomarytemperaturetokeepupapricipularunremarkablewaysfrompromptstoppages. Anevaluation wasshapethethevarious parameterstobiewiedpullingbackforthefoundationofadrawingseparator. Thevarious stages pulled in with the approach of foundation

![Fig.4.1: Time taken to complete system](image)
V. CONCLUSIONS

The strategy of attracting separator proposition given in the report the aveseena yearly electrical massiveness paring purpose of control of 116.14Lakh kWh and coal experience resources of 12730 MT. Seen electrical energy spare fundsworkouttobe 5.3%oftheyearlyelectricalcentralityateup(2158.9 Lakh kWh) during the year Sep 2018 – Aug 2019. Though tab out yearly importance cost sparing point of confinement tofRs.769.54Lakhs (checking coal theory saves) works out to be8.9%oftheyearlycentralitycost (Rs.8635.8 Lakhs) forth year Sep 2018– Aug 2019.

REFERENCES