

International Journal of Advanced Trends in Engineering, Science and Technology (IJATEST) Vol.2.Issue.1,January.2017

www.ijatest.org

 16

Design Of A Compact Reversible Carry Look-Ahead

Adder Using Dynamic Programming
1. M.UREKHA ,2. MOHAMMAD ZUBAIR,Assistant Professor

1,2. Department of Electronics and Communication Engineering,Dr.K.V.Subba Reddy College of

Engineering For Women

1.ureka.472@gmail.com,2. mdzubair.1345@gmail.com

Abstract: This paper presents a new method for designing a reversible carry look-ahead adder (RCLA) based on dynamic

programming. In this method, we propose a faster technique for generating carry output, which also outperforms the

existing ones in terms of number of operations. In addition, we design a compact reversible carry look-ahead circuit based

on the proposed technique. In order to optimize our design, we propose a first ever known Reversible Partial Adder (RPA)

circuit with the optimum numbers of the quantum cost and garbage outputs which concurrently produce carry propagation

signal, carry generation signal and summation of the inputs. Using RPA as a unit element of RCLA construction, we

optimize the designs of RCLA and show that the proposed design is better than the existing ones in terms of the number of

gates, quantum cost, garbage outputs and delay with the help of Microwind DSCH 3.5, e.g., the proposed 128-bit adder

improves 77.55% on number of gates, 10% on garbage outputs, 2.16% on delay and 77.61% on quantum cost over the

existing best one.

Keywords- Quantum Cost; Garbage Output; Logic Design; Reversible

I.INTRODUCTION

 A minimal heat generation of kTln(2) joules of energy per

computing cycle requires for logical computing devices were

demonstrated by Landauer [1]. This resultant dissipated heat

also causes noise in the remaining circuitry. The number of

lost bits is directly connected to the dissipated energy.

Resultantly, a new pattern with a logical structure consisting

of the same number of inputs and outputs along with one-to-

one mapping between the input and output states came in

computer design. Any device designed to these constraints is

known as a reversible logic device which reduces the energy

dissipation[1]. Dynamic programming[2] is an optimization

methodology that changes a complex problem into a

sequence of simpler problems. The multi-stage nature of the

optimization procedure is the crucial characteristic of

dynamic programming.

 Reversible logic has received great attention in the

recent years due to its ability to reduce the power dissipation

which is the main requirement in low power digital design. It

has wide applications in advanced computing, low power

CMOS design, Optical information processing, DNA

computing, bio information, quantum computation and

nanotechnology. Conventional digital circuits dissipate a

significant amount of energy because bits of information are

erased during the logic operations. Thus, if logic gates are

designed such that the information bits are not destroyed, the

power consumption can be reduced dramatically. The

information bits are not lost in case of a reversible

computation. This has led to the development of reversible

gates. ALU is a fundamental building block of a central

processing unit (CPU) in any computing system; reversible

arithmetic unit has a high power optimization on the offer.

By using suitable control logic to one of the input variables

of parallel adder, various arithmetic operations can be

realized. In this project, ALU based on a Reversible low

power control unit for arithmetic & logic operations is

proposed. In our design, the full Adders are realized using

synthesizable, low quantum cost, low garbage output DPeres

gates. This project presents a novel design of Arithmetic &

Logical Unit using Reversible control unit. These Reversible

ALU has been modeled and verified using Verilog and

Altera simulator. Comparative results are presented in terms

of number of gates, number of garbage outputs, number of

constant inputs and Quantum cost.

II. SYSTEM ARCHITECTURE

2.1 Method for carry generation:

A problem f into a set of other problems can be

decomposed using dynamic programming where the answer

for f can be found in terms of a simple operation from the

answers of sub-problems. The dynamic algorithm is

completely specified by a set of operations for a set of sub-

functions of the computation. In our proposed method, we

divide the final carry output into a set of sub carry outputs

and solve them individually using dynamic programming

algorithm. The fastest adder is the carry look-ahead adder

(CLA) and they achieve the speed through parallel carry

computations. In a pair of binary sequences, a bit-pair is

added and the CLA logic determines whether that bit-pair

will generate a carry or propagate a carry. This allows the

circuit to "pre-process" the two numbers being added to

determine the carry ahead of time. Therefore, there is no

delays like the ripple carry effect, when the actual addition is

performed.

The method for carry generation is based on dynamic

programming algorithm which is described below. The

adder is based on the fact that a carry signal will be

generated in two cases:

1. When Ai and Bi both bits are 1; or

2. When Ai or Bi bit is 1 and the third input, carry-in Ci is 1.

Thus, we can write:

Cout = Ci+1=Ai. Bi . Ci' + (Ai + Bi).Ci…………..3.1

The above expression can also be represented as:

Ci+1=Pi G*i-1+Gi.G*i-1'…………………..3.2

Here, Gi = Ai . Bi and Pi = Ai Bi, where 0 <= i < n

mailto:mdzubair.1345@gmail.com

International Journal of Advanced Trends in Engineering, Science and Technology (IJATEST) Vol.2.Issue.1,January.2017

www.ijatest.org

 17

Applying this to a 4-bit adder, we have:

C0 = 0

C1 = P0 C0 + G0 C0'=P0.0+G0.1=G0=G*0

C2 = P1G*0+G1 G*0' = G*1'

C3 = P2G*1+G2 G*2

C4 = P3G*2 +G3G*3G*2=G*3

The sum signal can be calculated as follows:

Si = Ai Bi Ci = Pi Ci

In Table 3.1, the number of required operations to implement

the carry generation of the proposed adder technique for

various numbers of bits has shown. From this table, we can

say that the total number of operations required for the

existing carry generation method is much

less than the previous carry generation methods. Algorithm I

describes the computational process for the sum and carry

operations of the proposed method, where the carry

operation of Algorithm I is performed by Algorithm II

Table 3.1 Comparison among the CLAA and the Reversible

CLAA carry generation technique in terms of number of

operations

Algorithm I: Technique for sum and carry generation of

an n-bit carry look-ahead adder:
Input: A, B; (Both are n-bit binary numbers)

Output: Sum (n-bit), Carry (1-bit)

1. Begin

2. For i = 0 to (n-1) do

3. Take one partial adder, Fi

4. Set, Fi.a = Ai ; Fi.b = Bi ; Fi.c = 0 ; Fi.d = 0

5. Output Sumi = Fi.r

6. End For

7. For i = 0 to (n-1) do

8. Pi = Ai Bi

9. Gi = Ai.Bi

10. End For

11. Set Carry = Generate_Carry(C0, P0, G0, P1, G1, …, Pn-

1, Gn-1) [Algorithm II]

12. End

Alogrithm II: Carry generation algorithm for

generate_carry() procedure

Input: C0, P (P0, P1, …, Pn-1), G (G0, G1, …, Gn-1)

Output: Carry (1-bit)

1. Begin

2. For i =1 to n do

3. Ci = Pi-1. G*i-2 + Gi-1. G*i-2! where, G*i-2 = Pi-2.G*i-3

+ Gi-2.G*i-3!

4. End For

5. Set, Carry = Cn

6. End

2.2 Design of a compact reversible carry look-ahead

adder:

In this section, i use a new method for designing a

reversible n-bit carry look-ahead adder circuit. To implement

this method addition algorithm, carry generation circuit is

needed. At first, i propose a new reversible partial adder

named RPA to produce carry propagation (P) signal, carry

generation (G) signal and sum (S) and then, i present a

reversible 4-bit carry look-ahead adder circuit. Finally, i

show the circuit of a reversible n-bit carry look-ahead adder

using the proposed algorithm for addition. Sections A, B, C,

D and E present the proposed reversible partial adder,

comparison of reversible partial adders, proposed design of a

compact reversible carry look-ahead adder, complexity of

the proposed reversible n-bit carry look-ahead adder circuit

and performance analysis and simulation results of the

proposed design, respectively.

2.2.1 Reversible Partial Adder

Fig 2.1 Block diagram of Reversible Partial adder, When

D=0

In this subsection, a new 4_4 reversible partial adder, namely

RPA, is proposed. The input vector, Iv and the output vector,

Ov of the proposed circuit are as follows:

Iv={A,B,C,D}; and

Ov = {P=A,Q=A B,R=A B C, S=AB D}

Fig. 3.1 shows the diagram of the proposed 4_4

RPA. The quantum cost of RPA is five which is shown in

Fig. 3.2 The corresponding truth table of the circuit is shown

in Table 2.1. It can be verified from the truth table that the

input pattern corresponding to a particular output pattern can

be uniquely determined. The proposed RPA is designed in

such a way that it can be efficiently used as a reversible

partial adder by setting the fourth input bit as a constant zero

0. Algorithm III describes the design of RPA as a reversible

partial adder.

2.2.2. Comparison of Reversible Partial Adder with

Others

In this subsection, we analyze the performance of the

proposed circuit as a reversible partial adder and compare it

with the existing circuits. Table III and Fig. 4 show the

comparative result analysis among the proposed reversible

partial adder and the existing partial adders. From this table,

we can see that our design is much better than existing

designs, especially in terms of quantum cost. As partial

adder is basic units of a reversible carry look ahead adder

circuit, this improvement has significant impact on this

circuit.

No. of bits Existing Proposed

4 30 24

8 60 48

16 120 96

32 240 192

International Journal of Advanced Trends in Engineering, Science and Technology (IJATEST) Vol.2.Issue.1,January.2017

www.ijatest.org

 18

Table 2.3 Comparison of partial adders obtained by different

methods

2.2.3. Implementation of a Reversible Carry Look-Ahead

Adder:

In the previous subsections, we propose one new

reversible circuit to design the reversible carry look-ahead

adder. In the following Subsections i and ii, we describe the

design of a 4-bit and an n-bit reversible carry look-ahead

adder, respectively.

i) Design of a 4-bit Reversible Carry Look-Ahead

Adder Circuit

A 4-bit reversible carry look-ahead adder is constructed

using proposed RPA circuits, Fredkin gates and CNOT

gates.

ii) Design of an n-Bit Reversible Carry Look-Ahead

Adder Circuit

The construction procedure of an n-bit reversible

carry look-ahead adder circuit is as follows: Firstly, I

generate n numbers of carry propagation (P) and carry

generation (G) signals using n numbers of reversible partial

adder circuits. Secondly, we produce carry-out signals using

a Fredkin gate, where the inputs are the carry propagation

(P) and carry generation (G) signals. Algorithm IV describes

the whole process of addition. In Fig. 6, we show the design

of an n-bit reversible carry look-ahead adder circuit.

Fig 2.4 Block diagram of n-bit reversible

carry look-ahead adder circuit

Algorithm IV: Algorithm for construction of an n-bit

reversible carry look-ahead adder circuit:

Input: (x0, x1, x2, … , xn-1) , (y0 , y1, y2, … , yn-1)

Output: (s0, s1, s2, … ,sn-1) , (c1, c2, … ,cn-1)

1. Begin

2. For i:=0 to (n-1) do

3. Apply CNOT gate to make a copy of cj

4. Apply RPA circuit where

5. Input:= {xj, yi, cj, 0} and Output:= {xj, pi, sj, gi}

6. Apply Fredkin Gate where

7. Input:= {cj, pi, gj} and Output:= {cj, ci+1, G}

8. End Loop

9. End

III. SUB MODULES OF THE PROJECT

3.1 BASIC DEFINITIONS PERTAINING TO

REVERSIBLE LOGIC

3.1.1 Reversible function:

The multiple output Boolean function F(x1; x2; :::;

xn) of n Boolean variables is called reversible if:

a. The number of outputs is equal to the number of inputs;

b. Any output pattern has a unique pre-image. 418 In other

words, reversible functions are those that perform

permutations of the set of input vectors.

3.1.2 Reversible logic gates:

 Reversible Gates are circuits in which number of

outputs is equal to the number of inputs and there is a one to

one correspondence between the vector of inputs and

outputs[8- 10]. It not only helps us to determine the outputs

from the inputs but also helps us to uniquely recover the

inputs from the outputs.

3.1.3 Ancilla inputs/ constant inputs :

 This refers to the number of inputs that are to be

maintain constant at either 0 or 1 in order to synthesize the

given logical function.

3.1.4 Garbage outputs:

 Additional inputs or outputs can be added so as to

make the number of inputs and outputs equal whenever

necessary. This also refers to the number of outputs which

are not used in the synthesis of a given function. In certain

cases these become mandatory to achieve reversibility.

Garbage is the number of outputs added to make an n-input

k-output function ((n; k) function) reversible.

We use the words ―constant inputs‖ to denote the present

value inputs that were added to an (n; k) function to make it

reversible. The following simple formula shows the relation

between the number of garbage outputs and constant inputs .

Input + constant input = output + garbage.

3.1.5 Quantum cost:

 Quantum cost refers to the cost of the circuit in

terms of the cost of a primitive gate. It is calculated knowing

the number of primitive reversible logic gates (1*1 or 2*2)

required to realize the circuit. The quantum cost of a circuit

is the minimum number of 2*2 unitary gates to represent the

circuit keeping the output unchanged. The quantum cost of a

1*1 gate is 0 and that of any 2*2 gate is the same, which is 1.

3.1.6 Flexibility:

 Flexibility refers to the universality of a reversible

logic gate in realizing more functions.

3.1.7 Gate Level:

 This refers to the number of levels in the circuit

which are required to realize the given logic functions.

3.1.8 Hardware Complexity:

 This refers to the total number of logic operation in

a circuit. Means the total number of AND, OR and EXOR

operation

Methods Quantum cost Garbage

outputs

RPA 5 1

CLAA 9 3

International Journal of Advanced Trends in Engineering, Science and Technology (IJATEST) Vol.2.Issue.1,January.2017

www.ijatest.org

 19

VI. ANCIENT VEDIC MATHEMATICAL

ALGORITHMS

The Vedic mathematics mainly reduces the complex typical

calculations in to simpler by applying sutras as stated above.

These Vedic mathematic techniques are very efficient and

take very less hardware to implement. These sutras are

mainly used for multiplication of two decimal numbers and

we extend these sutras for binary multiplications. Some of

the techniques are discussed below.

A. Urdhva -Tiryagbhyam Sutra (Vertically and Crosswise):

Booth multipliers are generally used for multiplication

purposes. Booth Encoder, Wallace Tree, Binary Adders and

Partial Product Generator are the main components used for

Booth multiplier architecture. Booth multiplier is mainly

used for 2 applications are to increase the speed by reduction

of the partial products and also by the way that the partial

products to be added. In this section we propose a Vedic

multiplication technique called “Urdhva-Tiryakbhyam –

Vertically and crosswise.”

B. Example for Decimal Multiplication Using Vedic

Mathematics:

To illustrate this technique, let us consider two decimal

numbers 252 and 846 and the multiplication of two decimal

numbers 252×846 is explained by using the line diagram

shown in below figure1. First multiply the both numbers

present on the two sides of the line and then first digit is

stored as the first digit of the result and remaining digit is

stored as pre carry for the next coming step and the process

goes on and when there is more than one line then calculate

the product of end digits of first line and add the result to the

product obtained from the other line and finally store it as a

result and carry. The obtained carry can be used a carry for

the further steps and finally we will get the required result

which is the final product of two decimal numbers 252x846.

Take the initial carry value as the zero. For clear

understanding purpose we explained the complete algorithm

in the below line diagram such that each bit represents a

circle and number of bits equal to the number of circles

present.

Figure 1. Multiplication of two decimal numbers

4.1 Modified Vedic Multiplier Architecture

The architectures for 2×2, 4×4, 8×8, 16×16. . .N×N bit

modules are discussed in this section. In this section, the

technique used is „Urdhva-Tiryakbhyam‟ (Vertically and

Crosswise) sutra which is a simple technique for

multiplication with lesser number of steps and also in very

less computational time. The main advantage of this Vedic

multiplier is that we can calculate the partial products and

summation to be done concurrently. Hence we are using this

Vedic multiplier in almost all the ALU‟s.

A. 2×2 Vedic Multiplier Block

To explain this method let us consider 2 numbers with 2 bits

each and the numbers are A and B where A=a0a1 and

B=b0b1 as shown in the below line diagram. First the least

significant bit (LSB) bit of final product (vertical) is

obtained by taking the product of two least significant bit

(LSB) bits of A and B is a0b0. Second step is to take the

products in a crosswise manner such as the least significant

bit (LSB) of the first number A (multiplicand) is multiplied

with the next higher bit of the multiplicand B in a crosswise

manner. The output generated is 1-Carry bit and 1bit used in

the result as shown below. Next step is to take product of 2

most significant bits (MSB) and for the obtained result

previously obtained carry should be added. The result

obtained is used as the fourth bit of the final result and final

carry is the other bit.

s0=a0b0 (1)

c1s1=a1b0+a0b1 (2)

c2s2=c1+a1b1 (3)

The obtained final result is given as c2s2s1s0. A 2×2 Vedic

multiplier block is implemented by using two half adders

and four two input and gates as shown in below Figure 2.

Figure 2. Block Diagram of 2×2 Vedic Multiplier

B. 4x4 Vedic Multiplier Block

In this section, now we will discuss about 4x4 bit Vedic

multiplier. For explaining this multiplier let us consider two

four bit numbers are A and B such that the individual bits

can be represented as the A3A2A1A0 and B3B2B1B0. The

procedure for multiplication can be explained in terms of

International Journal of Advanced Trends in Engineering, Science and Technology (IJATEST) Vol.2.Issue.1,January.2017

www.ijatest.org

 20

line diagram shown in below figure. The final output can be

obtained as the C6S6S5S4S3S2S1S0. The partial products

are calculated in parallel and hence delay obtained is

decreased enormously for the increase in the number of bits.

The Least Significant Bit (LSB) S0 is obtained easily by

multiplying the LSBs of the multiplier and the multiplicand.

Here the multiplication is followed according to the steps

shown in the line diagram in figure 3. After performing all

the steps the result (Sn) and Carry(Cn) is obtained and in the

same way at each step the previous stage carry is forwarded

to the next stage and the process goes on.

S0 = A0B0 (4)

C1S1 = A1B0 + A0B1 (5)

C2S2 = C1 + A0B2 + A2B0 + A1B1 (6)

C3S3 = C2 + A0B3 + A3B0 + A1B2 + A2B1 (7)

C4S4 = C3 + A1B3 + A3B1 + A2B2 (8)

C5S5 = C4 + A3B2 + A2B3 (9)

C6S6 = C5 + A3B3 (10)

For clear understanding, observe the block diagrams for 4x4

as shown below figure 3 and within the block diagram 4x4

totally there are four 2x2 Vedic multiplier modules, and

three ripple carry adders which are of four bit size are used.

The four bit ripple carry adders are used for addition of two

four bits and likewise totally four are use at intermediate

stages 3 of multiplier. The carry generated from the first

ripple carry adder is passed on to the next ripple carry adder

and there are two zero inputs for second ripple carry adder.

The arrangement of the ripple carry adders are shown in

below block diagram which can reduces the computational

time such that the delay can be decrease.

Figure 3. Block Diagram of 4x4 bit Vedic Multiplier

C. 8x8 Vedic Multiplier Block

In this section, now we will discuss about 4x4 bit Vedic

multiplier. For explaining this multiplier let us consider two

8 bit numbers are A and B such that the individual bits can

be represented as the A7A6A5A4A3A2A1A0 and

B7B6B5B4B3B2B1B0. The procedure for multiplication

can be explained in terms of line diagram shown in below

figure 4. The final output can be obtained as the

16S15S14S13S12S11S10S9S8S7S6S5S4S3S2S1S0. The

partial products are calculated in parallel and hence delay

obtained is decreased enormously for the increase in the

number of bits. The Least Significant Bit (LSB) S0 is

obtained easily by multiplying the LSBs of the multiplier

and the multiplicand. Here the multiplication is followed

according to the steps shown in the line diagram in figure 4.

After performing all the steps the result (Sn) and Carry (Cn)

is obtained and in the same way at each step the previous

stage carry is forwarded to the next stage and the process

goes on.

Figure 4. Block Diagram of 8x8 bit Vedic Multiplier

For clear understanding, observe the block diagrams for 8x8

as shown below and within the block diagram 8x8 totally

there are four 4x4 Vedic multiplier modules, and three

modified carry select adders which are of 8 bit size are used.

D. 16x16 Vedic Multiplier Block

In this section, now we will discuss about 4x4 bit Vedic

multiplier[10]. For explaining this multiplier let us consider

two 8 bit numbers are A and B such that the individual bits

can be represented as the A [15:0] and B [15:0]. The

procedure for multiplication can be explained in terms of

line diagram shown in below figure 5. The final output can

be obtained as the C16S[31:0]. The partial products are

calculated in parallel and hence delay obtained is decreased

enormously for the increase in the number of bits. The Least

Significant Bit (LSB) S0 is obtained easily by multiplying

the LSBs of the multiplier and the multiplicand. Here the

multiplication is followed according to the steps shown in

the line diagram in figure.

International Journal of Advanced Trends in Engineering, Science and Technology (IJATEST) Vol.2.Issue.1,January.2017

www.ijatest.org

 21

Figure 7. Block Diagram of 16x16 bit Vedic Multiplier

E. 32x32bit vedic multiplier

For any complex number multiplier design, the most

important procedure is Multiplication. Here we have

designed the 32 bit multiplier using vedic algorithm

(Urdhvatiryakbyham sutra). Fig.1 shows the block diagram

of 32x32bit vedic multiplier module which is easily designed

using four 16x16bit Vedic multipliers modules. Ripple Carry

Adders(RCA) are used for the addition of the output of these

four 16x16bit multiplier modules.

Suppose the two 32bit numbers are X [31:0] and Y [31:0].

Fig. 8. Block Diagram of 32x32bit vedic multiplier

Each of these numbers are divided into two 16-bit numbers

X [31:16]-X[15:0](XH-XL) and Y[31:16]-Y[15:0](YHYL)

and given as a input to the 16x16bit vedic multiplier module.

The input combinations for 1 to 4 16x16bit multiplier

modules are XL-YL, XL-YH, XH-YL and XH-YH

respectively. Each multiplier gives the intermediate output of

32-bit. This intermediate output is then added using ripple

carry adders (RCA). The output of second and third

multiplier module is added using RCA1. The output of

RCA1 (32-bit) and the higher order bits of first multiplier is

then added using the RCA2 which gives the output S[31:16].

Finally the higher order bits of RCA2, the output of fourth

multiplier and the carry from the RCA1 (the fifteenth bit

position) are added to get the higher order bits S[63:32] of

the final output of 32x32bit multiplier. The LSB bits S[15:0]

of final output are obtained directly by taking the lower order

bits of the output of first 16x16bit multiplier.

V. RESULT

The corresponding schematics of the adders after synthesis is

shown below.

Figure 7.13: RTL schematic of PROPOSED

REVERSIBLE CLA4BIT

Figure 7.14: RTL schematic of PROPOSED

REVERSIBLE CLA4BIT

Figure 7.15: Technology schematic of PROPOSED

REVERSIBLE CLA4BIT

International Journal of Advanced Trends in Engineering, Science and Technology (IJATEST) Vol.2.Issue.1,January.2017

www.ijatest.org

 22

Figure 7.16: Technology schematic of PROPOSED

REVERSIBLE CLA4BIT

Figure 7.17: Internal block PROPOSED REVERSIBLE

CLA4BIT

7.4 Synthesis Report

Table 7-1: Synthesis report of PROPOSED REVERSIBLE

CLA4BIT

SIMULATION RESULTS

The corresponding simulation results of the adders are

shown below.

Figure 8-1: Test Bench for PROPOSED REVERSIBLE

CLA4BIT

Figure 8-2: Simulated output for PROPOSED

REVERSIBLE CLA4BIT

CONCLUSION AND FUTURE SCOPE

This paper presented a novel design methodology of a

reversible nbit carry look-ahead adder (RCLA) circuit using

dynamic programming, where n is the number of bits. An

efficient algorithm was proposed to design a compact low

power reversible carry lookahead adder. The carry look-

ahead adder was constructed in two steps: At first, a

reversible partial adder was developed to produce the carry

propagation, carry generation and summation signals of the

inputs. Secondly, a reversible circuit for generating the carry

output of RCLA was used. We also found that the proposed

reversible carry look-ahead adder circuit is much faster than

the existing ones [13-16]. In addition, we show that the

proposed reversible carry look-ahead adder is constructed

with the optimum number of reversible gates, quantum cost,

garbage outputs, quantum gate calculation complexity and

delay using Xilinx ISE14.4. In this paper, we present an

explicit scheme for executing elementary arithmetic

operation. As adders are the basic and one of the most

important components of a reversible arithmetic unit, we

believe that the implementation of our design can certainly

improve the currently available reversible systems [3], [4],

[19].

VI. FUTURE WORK

Learning and designing a compact reversible carry skip

adder using reversible logic gates and using dynamic

programming. To get efficient outcome for addition we are

using new technique Reversible partial adder for carry skip

International Journal of Advanced Trends in Engineering, Science and Technology (IJATEST) Vol.2.Issue.1,January.2017

www.ijatest.org

 23

adder. We are extending this work for designing of Vedic

multiplier. Multiplication is one of the fundamental block in

almost all the arithmetic logic units. This Vedic

multiplication is mainly used in the fields of the Digital

Signal Processing (DSP) and also in so many applications

like Fast Fourier Transform, convolution, filtering and

microprocessor applications. In most of the DSP algorithms

multiplier is one of the key component and hence a high

speed and area efficient multiplier is needed and

multiplication time is also one of the predominant factor for

DSP algorithms. The ancient mathematical techniques like

Vedic mathematics used to reduce the computational time

such that it can increases speed and also requires less

hardware.

REFERENCES
[1] C. H. Bennett and G. Brassard. Quantum cryptography: Public-

key distribution and coin tossing. In Proceedings of IEEE

International Conference on Computers, Systems, and Signal

Processing, pp. 175-179, Bangalore, India, 1984. IEEE Press.

[2] A. Dixit, V. Kapse, Arithmetic & logic unit (ALU) design using

reversible control unit, International Journal of Engineering and

Innovative Technology (IJEIT) 1(June (6)) (2012).

[3] H.V.R. Aradhya, B.V.P. Kumar, K.N. Muralidhara, Design of

control unit for low power ALU using reversible logic,

International Journal of Scientific & Engineering Research 2

(September (9)) (2011).

[4] A. Peres, “Reversible logic and quantum computers,” Phys.

Rev. A, vol. 32, pp. 3266–3276, Dec 1985.

[5] E. Fredkin, T. Toffoli, “Conservative logic,” International

Journal of Theoretical Physics, vol. 21, no. 3–4, pp. 219–253, 1982.

[6] M. Nielsen and I. Chuang, “Quantum Computation and

Quantum Information,” Cambridge Univ. Press, 2000.

