
National Conference on Emerging Trends in Information, Digital & Embedded Systems(NC’e-TIDES-2016)

International Journal of Advanced Trends in Engineering, Science and Technology(IJATEST)Volume.4,Special Issue.1Dec.2016

www.ijatest.org

 219

ASIC Implementation of a High Speed Double (64bit)

Precision Floating Point Arithmetic unit

A. Srihitha
1
, Syed KareemSaheb

2
, J.Prasad Babu

3

PG scholar, Dept of ECE(VLSI), ASIT, Gudur, AP state, E-mail:srihitha.arani@gmail.com

Research scholar, Dept of ECE, ANU, Guntur, AP state, E-mail:sd_kareem@yahoo.com

Associate Professor, Dept of ECE, ASIT, Gudur, AP state, E-mail:prasadsupriya1983@gmail.com

Abstract: To represent very large or small values, large range is re-quired as the integer representation is no longer appro-

priate. These values can be represented using the IEEE-754 standard based floating point representation. This paper

presents high speed ASIC implementation of a floating point arithmetic unit which can perform addi-tion, subtraction,

multiplication, division functions on 32-bit operands that use the IEEE 754-2008 standard. Pre- normalization unit and

post normalization units are also discussed along with exceptional handling. All the functions are built by feasible efficient

algorithms with several changes incorporated that can improve overall la-tency, and if pipelined then higher throughput.

The algo-rithms are modeled in Verilog HDL and the RTL code for adder, subtractor, multiplier, divider, square root are

syn-thesized using Cadence RTL complier where the de-sign is targeted for 180nm TSMC technology with proper

constraints.

I.INTRODUCTION

An arithmetic circuit which performs digital arithmetic

operations has many applications in digital

coprocessors, application specific circuits, etc. Because

of the advance-ments in the VLSI technology, many

complex al-gorithms that appeared impractical to put

into practice, have become easily realizable today with

desired perfor-mance parameters so that new designs

can be incorporated [2]. The standardized methods to

represent floating point numbers have been instituted

by the IEEE 754 standard through which the floating

point operations can be carried out efficiently with

modest storage requirements. The three basic

components in IEEE 754 standard floating point

numbers are the sign, the exponent, and the man-tissa

[3]. The sign bit is of 1 bit where 0 refers to positive

number and 1 refers to negative number [3]. The man-

tissa, also called significand which is of 23bits

composes of the fraction and a leading digit which

represents the precision bits of the number [3] [2]. The

exponent with 8 bits represents both positive and

negative exponents. A bias of 127 is added to the

exponent to get the stored exponent [2]. Table 1 show

the bit ranges for single (32-bit) and double (64-bit)

precision floating-point values [2]. A floating point

number representation is shown in table 2 The value of

binary floating point representation is as follows where

S is sign bit, F is fraction bit and E is exponent

field.Value of a floating point number= (-1)S x val (F)

x 2val(E)

TABLE 1 BIT RANGE FOR SINGLE (32-BIT)

AND DOUBLE (64-BIT) PRECISION
FLOATING-POINT VALUES

TABLE 2 FLOATING POINT NUMBER
REPRESENTATION

There are four types of exceptions that arise during

float-ing point operations. The Overflow exception is

raised whenever the result cannot be represented as a

finite value in the precision format of the destination

[13].

The Underflow exception occurs when an intermediate

result is too small to be calculated accurately, or if the

operation’s result rounded to the destination precision is

too small to be normalized [13] The Division by zero ex-

ception arises when a finite nonzero number is divided by

zero [13]. The Invalid operation exception is raised if the

given operands are invalid for the operation to be

performed [13].In this paper, ASIC implementation of a

high speed FPU has been carried out using efficient addi-

tion, subtraction, multiplication, division algorithms. Sec-

tion II depicts the architecture of the floating point unit

and methodology, to carry out the arithmetic operations.

Section III presents the arithmetic operations that use ef-

National Conference on Emerging Trends in Information, Digital & Embedded Systems(NC’e-TIDES-2016)

International Journal of Advanced Trends in Engineering, Science and Technology(IJATEST)Volume.4,Special Issue.1Dec.2016

www.ijatest.org

 220

ficient algorithms with some modifications to improve la-

tency. Section IV presents the simulation results that have

been simulated in Cadence RTL compiler using 180nM

process. Section V presents the conclusion.

II.PROPOSED WORK

ARCHITECTURE AND METHODOL-OGY:
The FPU of a single precision floating point unit that per-

forms add, subtract, multiply, divide functions is shown in

figure 1 [1]. Two pre-normalization units for addition/

subtraction and multiplication/division operations has

been given [1]. Post normalization unit also has been giv-

en that normalizes the mantissa part [2]. The final result

can be obtained after post- normalization. To carry out the

arithmetic operations, two IEEE-754 format single preci-

sion operands are considered. Pre- normalization of the

operands is done. Then the selected. handled using ex-

ceptional handling. The executed operation depends on a

three bit control signal (z) which will determine the arith-

metic operation is shown in table 3.

Figure 1. Block Diagram of floating point

arithmeticunit [1]
 Figure 2. 16 bit modified carry look ahead adder [4]

TABLE 3 FLOATING POINT UNIT OPER-
ATIONS

 32 BIT FLOATING POINT ARITHME-

TIC UNIT
A. Addition Unit:
One of the most complex operations in a floating-point

unit comparing to other functions which provides

major delay and also considerable area. Many

algorithms has been developed which focused to

reduce the overall la-tency in order to improve

performance. The floating point addition operation is

carried out by first checking the zeros, then aligning

the significand, followed by adding the two

significands using an efficient architecture. The

obtained result is normalized and is checked for excep-

tions. To add the mantissas, a high speed carry look

ahead has been used to obtain high speed. Traditional

carry look ahead adder is constructed using AND,

XOR and NOT gates. The implemented modified carry

look ahead adder uses only NAND and NOT gates

which decreases the cost of carry look ahead adder and

also enhances its speed also [4].The 16 bit modified

carry look ahead adder is shown in figure 2 and the

metamorphosis of partial full adder is shown in figure 3

using which, a 24 bit carry look ahead adder has been

constructed and performed the addition operation.

Figure 2. 16 bit modified carry look ahead adder [4]

Figure. 3 Metamorphosis of partial full adder [4]

B. Subtraction Unit:

National Conference on Emerging Trends in Information, Digital & Embedded Systems(NC’e-TIDES-2016)

International Journal of Advanced Trends in Engineering, Science and Technology(IJATEST)Volume.4,Special Issue.1Dec.2016

www.ijatest.org

 221

Subtraction operation is implemented by taking 2’s

com-plement of second operand. Similar to addition

operation, subtraction consists of three major tasks pre

nor-malization, addition of mantissas, post

normalization and exceptional handling. Addition of

mantissas is carried out using the 24 bit MCLA shown

in figure 2 and figure 3.

C. Multiplication Algorithm:

Constructing an efficient multiplication module is a it-

erative process and 2n-digit product is obtained from

the product of two n-digit operands. In IEEE 754

floating-point multiplication, the two mantissas are

multiplied, and the two exponents are added. Here first

the exponents are added from which the exponent bias

(127) is removed. Then mantissas have been multiplied

using feasible algo-rithm and the output sign bit is

determined by exoring the two input sign bits. The

obtained result has been nor-malized and checked for

exceptions.To multiply the man-tissas Bit Pair

Recoding (or Modified Booth Encoding) algorithm has

been used, because of which the number of partial

products gets reduces by about a factor of two, with no

requirement of pre-addition to produce the partial

products. It recodes the bits by considering three bits at

a time. Bit Pair Recoding algorithm increases the

efficiency of multiplication by pairing. To further

increase the effi-ciency of the algorithm and decrease

the time complexity, Karatsuba algorithm can be paired

with the bit pair recod-ing algorithm. One of the fastest

multiplication algorithm is Karatsuba algorithm which

reduces the multiplication of two n-digit numbers to

3nlog32 ~ 3n1.585 single-dig-it multiplications and

therefore faster than the classical algorithm, which

requires n2 single-digit products [11]. It allows to

compute the product of two large numbers x and y

using three multiplications of smaller numbers, each

with about half as many digits as x or y, with some

additions and digit shifts instead of four multiplications

[11]. The steps are carried out as followsLet x and y be

represented as n-digit numbers with base B and m<n.

x = x1Bm + x0 y = y1Bm + y0
Where x0 and y0 are less than Bm [11]. The product is

then xy
= (x1Bm + x0)(y1Bm + y0)= c1B2m + b1Bm +

a1 Where c1 = x1y1
b1 = x1y0+ x0y1 a1 = x0y0.

b1 = p1- z2 - z0
p1 = (x1 + x0)(y1 + y0)

Here c1, a1, p1 has been calculated using bit pair

recoding algorithm. Radix-4 modified booth encoding

has been used which allows for the reduction of partial

product array by half [n/2]. The bit pair recoding table

is shown in table 3. In the implemented algorithm for

each group of three bits (y2iþ1, y2i, y2i_1) of

multiplier, one partial product row is generated

according to the encoding in table 3. Radix-4 modified

booth encoding (MBE) signals and their respec-tive

partial products has been generated using the figures4

and 5. For each partial product row, figure 4 generates

the one, two, and neg signals.

These values are then given to the logic in figure 5 with

the bits of the multiplicand, to produce the whole

partial product array. To prevent the sign extension the

obtained partial products are extended and the the

product has been calcu-lated using carry save select

adder.

TABLE 3:BIT-PAIR RECODING [11]

Figure 4 MBE signal generation [10]

Figure 5 Partial Product Generation [10]

D. Division Algorithm:

National Conference on Emerging Trends in Information, Digital & Embedded Systems(NC’e-TIDES-2016)

International Journal of Advanced Trends in Engineering, Science and Technology(IJATEST)Volume.4,Special Issue.1Dec.2016

www.ijatest.org

 222

Division is the one of the complex and time-consuming

operation of the four basic arithmetic operations. Divi-

sion operation has two components as its result i.e.

quo-tient and a remainder when two inputs, a dividend

and a divisor are given. Here the exponent of result has

been calculated by using the equation, e0 = eA – eB +

bias (127) -zA + zB followed by division of fractional

bits [5] [6]. Sign of result has been calculated from ex-

oring sign of two operands. Then the obtained quotient

has been normalized [5] [6]. Division of the fractional

bits has been performed by using non restoring division

algorithm which is modified to improve the delay. The

non-restoring division algorithm is the fastest among

the digit recurrence division methods [5] [6]. Generally

re-storing division require two additions for each

iteration if the temporary partial remainder is less than

zero and this results in making the worst case delay

longer[5] [6]. To decrease the delay during division,

the non-restoring divi-sion algorithm was introduced

which is shown in figure 6. Non-restoring division has

a different quotient set i.e it has one and negative one,

while restoring division has zero and one as the

quotient set[5] [6] Using the different quotient set,

reduces the delay of non- restoring division compared

to restoring division. It means, it only performs one

addition per iteration which improves its arithmetic

performance [6]. The delay of the multiplexer for

select-ing the quotient digit and determining the way to

calculate the partial remainder can be reduced through

rearranging the order of the computations.

In the implemented design the adder for calculating the

partial remainder and the multiplexer has been

performed at the same time, so that the multiplexer

delay can be ig-nored since the adder delay is generally

longer than the multiplexer delay. Second, one adder

and one inverter are removed by using a new quotient

digit converter. So, the delay from one adder and one

inverter connected in series will be eliminated.

Figure 6. Non Restoring Division algorithm

E. Square Root Unit:

Square root operation is difficult to implement because

of the complexity of the algorithms. Here a low cost

iterative single precision non-restoring square root

algorithm has been presented that uses a traditional

adder/sub-tractor whose operation latency is 25 clock

cycles and the issue rate is 24 clock cycles. If the

biased exponent is even, the biased exponent is added

to 126 and divided by two and mantissa is shifted to

itsleft by 1 bit before computing its square root.

Here before shifting the mantissa bits are stored in 23

bit register as 1.xx..xx. After shifting it becomes

1x.xx…If the biased exponent is odd the odd exponent

is added to 127 and divided by two. The mantissa. The

square root of floating point number has been

calculated by using non restoring square root circuitry

which is shown in figure 7 [15] [16].

National Conference on Emerging Trends in Information, Digital & Embedded Systems(NC’e-TIDES-2016)

International Journal of Advanced Trends in Engineering, Science and Technology(IJATEST)Volume.4,Special Issue.1Dec.2016

www.ijatest.org

 223

Figure 7. Non Restoring square root circuitry [15]

[16]

III.RESULTS

A. Addition Unit:

The single precision addition operation has been imple-

mentation in cadence RTL compiler. Here for the

inputs, input1=25.0 and input2=4.5 the result has been

obtained as 29.5 and is shown in figure 8.

Figure 8. Implementation of 32 bit Addition

operation

B. Subtraction Unit:

The single precision addition operation has been

imple-mentation in cadence RTL compiler. Here for

the inputs, input1=25.0 and input2=4.5 the result has

been obtained as 20.5 and is shown in figure 9

Figure 9. Implementation of 32 bit Subtraction op-

eration

C. Multiplication Unit:

The single precision multiplication operation has

been implementation in cadence RTL compiler.

For the inputs in_sign1=1’b0,in_sign2=1’b0;in_

exp1=8’b10000011,in_exp2=8’b1000 0010,in_

mant1=23’b00100,in_mant2=23’b00110, the output

obtained is out_sign=1;b0,out_exp=8’b10000011,out_

mant=23’b00101011and the simulation waveforms are

shown in figure 10.

Figure 10. Implementation of 32 bit Multiplication

operation

D .Division Unit:

The single precision division operation has been imple-

mentation in Cadence RTL compiler. For the inputs,

input1=100.0 and input2=36.0 quotient has been

obtained as 2.0 and the remainder as 28.0 andis shown

in figure 11.

National Conference on Emerging Trends in Information, Digital & Embedded Systems(NC’e-TIDES-2016)

International Journal of Advanced Trends in Engineering, Science and Technology(IJATEST)Volume.4,Special Issue.1Dec.2016

www.ijatest.org

 224

Figure 11. Implementation of 32 bit Division opera-

tion

D.Square Root Unit:
The single precision square root operation has been im-

plementation in Cadence RTL compiler. For the input,

input=144.0, square root has been obtained as 12.0 and

is shown in figure 12.

Figure 12. Implementation of 32 bit Division

operation

IV. CONCLUSION

The implementation of a high speed single precision FPU

has been presented. . The design has been synthesized

with TSMC 0.18 I-lm Logic Salicide 1.8V/3.3V 1 P6M

process technology. Strategies have been employed to re-

alize optimal hardware and power efficient architecture.

The layout generation of the presented architecture using

the backend flow is an ongoing process and is being done

using Cadence RTL compiler with 180nM process

technology. Hence it can be concluded that this FPU can

be effectively used for ASIC implementations which can

show comparable efficiency and speed and if pipelined

then higher throughput may be obtained.

.

REFERENCES

[1] (Rudolf Usselmann, “Open Floating Point Unit, The Free

IP Cores Projects”.

[2] Edvin Catovic, Revised by: Jan Andersson, “GRFPU –

High Performance IEEE754 Floating Point Unit”, Gaisler

Research, Första Långatan 19, SE413 27Göteborg, and

Sweden.

[3] David Goldberg, “What Every Computer Scientist Should

Know AboutFloating-Point Arithmetic”, ACM Computing

Surveys, Vol 23, No 1, March1991, Xerox Palo Alto Research

Center, 3333 Coyote Hill Road, Palo Alto, California 94304.

[4] Yu-Ting Pai and Yu-Kumg Chen, “The Fastest Carry

Lookahead Adder”, Department of Electronic Engineer-ing,

Huafan University.

[5] Prof. Kris Gaj, Gaurav, Doshi, Hiren Shah, “Sine/Co-sine

using CORDICAlgorithm”.

[6] S. F. Oberman and M. J. Flynn, “Division algorithms and

implementations,”IEEE Transactions on Computers, vol. 46,

pp. 833–854, 1997.

[7] Milos D. Ercegovac and Tomas Lang, Division and Square

Root: Digit- Recurrence Algorithms and Imple-mentations,

Boston: Kluwer Academic Publishers, 1994.

[8] ANSI/IEEE Standard 754-1985, IEEE Standard for Binary

Floating-PointArithmetic, 1985.

[9] Behrooz Parhami, Computer Arithmetic - Algo-rithms

and Hardware Designs, Oxford: Oxford Univer-sity Press,

2000.

[10] Steven Smith, (2003), Digital Signal Processing-A

Practical guide forEngineers and Scientists, 3rd Edition,

Elsevier Science, USA.

[11] D. J. Bernstein. Multidigit Multiplication for Mathe-

maticians. Advances in Applied Mathemat-ics, to appear

[12] A. Karatsuba and Y. Ofman. Multiplication of Mul-
tidigit Numbers onAutomata. Soviet Physics- Doklady, 7

(1963), 595-596.

BIOGRAPHY

A. Srihitha , B tech: Brahmaiah College of Engineering

 (ECE), M tech(VLSI): Audisankara institute of

technology, Gudur.

Syed Kareem Shaheb, Research scholar, Dept of ECE,

ANU, Guntur, AP state.

J. PrasadBbabu, Professor,Dept of ECE, ASIT, Gudur,

AP state.

