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ABSTRACT: Blind adaptive beam forming is getting appreciated for its various applications in contemporary 

communication systems where sources are statistically dependent or independent that are allowed to 

formulate new algorithms. Qualitative performance and time complexity are the main issues. In this paper, 

we propose a technique for constant modulus signals applying basic symmetric matrix factorization (SMF) in 

blind adaptive beam forming environment. We compared the existing Unscented Kalman Filter based 

Constant Modulus Algorithm (UKF-CMA) with proposed SMF-UKF-CMA algorithm. We see there is a 

better improvement of sensor array gain, signal to interference plus noise ratio (SINR) and mean squared 

deviation (MSD) as the noise variance and the array size increase with reduced computational complexity 

with the UKF-CMA. 

Keywords: Blind Adaptive Beam forming, SMF-UKF-CMA, Performance Comparison, UKF-CMA, MSD, 

SINR. 

 

 (I) Introduction 

Adaptive blind beamforming plays an 

important role in the contemporary 

communication systems where it constantly 

tributes to the enhancement of the signals that 

tend to be received or transmitted. Adaptive 

beamforming is achieved through varying the 

tap weights assigned to each antenna at every 

time instant applying signal processing 

algorithm. The weights are adjusted such that 

maximum array sensor gain is obtained with 

minimal amount of residual error. On 

processing the beamforming signals, the 

computational complexity depends on the 

algorithm which works upon the signals. The 

recent UKF-CMA algorithm for blind 

beamforming application works quite well 

compared to other beamforming techniques 

such as Least Mean Squared-Constant 

Modulus Algorithm (LMS-CMA) and 

Recursive Least Mean Squared-Constant 

Modulus Algorithm(RLS-CMA) with higher 

computational complexity [1]. 

The UKF-CMA algorithm enabled in Gaussian 

conditions converges to optimal solution when 

measurement noise is considered. However, 

UKF-CMA with process noise results in sub-

optimal solution [2] [3]. The CM criterion is 

incorporated into Weiner filter through which 

adaptability is achieved [2]. Generally, 

Constant Modulus (CM) cost functions with 

quadratic nature are very sensitive to array tap 

weights and can be minimized using 

Stochastic Gradient Descent methods (SGD) 

and the stability of SGD methods relatively 

depends on the step-size selected and thus 

results in slow rate of convergence [2]. 

An approximation of various CM algorithms is 

proposed. The computational cost of the 

Lagrangian formulated beamforming methods 

is higher over the regularized beam forming 

methods [4]. In unscented transform, the 

choice of sigma points is controlled by λ, 

which in turn linearises equal to the second 

order Gauss filter that results in optimal 

convergence of the solution [3] [5]. A new 

discriminate based symmetric matrix 

factorization algorithm is proposed for facial 

image characterization problems where 

discriminate analysis is based on the 

classification features [6]. A variant of SMF 

algorithm is proposed for blind source 

separation where it is a promising solution for 

spectral unmixing in hyper-spectral image 

processing and feature extraction [7]. Different 

methods of initialization are studied for SMF 

algorithm, where initialization plays an 
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important role since decomposition is non-

convex with many local minima [8]. 

Symmetric Matrix Factorization (SMF), a 

relatively novel technique for dimensionality 

reduction, has been in the growing fast since 

its origin. It incorporates the non-negativity 

constraint and thus achieves the parts-based 

representation as well as enhancing the 

construe of the problem correspondingly [9] 

[10]. Some new algorithms for SMF are 

proposed for blind source separation 

application when sources are statistically 

dependent by imposing constraints to the 

matrix [11]. Multichannel SMF decomposition 

algorithms are proposed for blind audio source 

separation. More variants of SMF algorithms 

for blind sources separation techniques can be 

found in [12]-[14]. An extensive survey of 

SMF algorithms can be seen in [15]. In 

rectangular matrix, the solution is normally 

iterative and the steps normally require a s b s 

b × × min , ( ) . In SMF, we make sure that the 

complexity is reduced to s b t × × , where t is 

the rank of the matrix. This is achieved by 

factoring the matrix, as a product of 2 

matrices, where first matrix acts as a set of 

basis vectors and other is positive definite. In 

quadratic problems, the coefficient matrix has 

to be positive-definite which is not true in 

general case, SMF forces the coefficient 

matrix to be positive-definite that results in 

closed-form solution. 

Figure 1 describes about the flow of the 

algorithm. The algorithm can be given as, 

Initialize Uo Vo, and m = 0 for 

 

Where  are 

non-negative matrices and the reduced rank t 

is given by t < min (s , b) where (s , b ,t )∈ R+ 

. In this paper, we have reduced the 

computational complexity of UKF-CMA 

algorithm by reducing dimensionality of the 

matrix computation, which is achieved through 

the Symmetric matrix factorization. Note: 

Notations followed in the paper are bold small 

letters are vector. Capital letters are matrix. 

(II) Beam forming Model 

Consider a linear array of size L of uniform 

spacing d ≤ λ/2 and n is the number of source 

signals (interference and desired signals). The 

signal output of an adaptive beam former is 

represented as [1], 

 

Figure 1. Flowchart of SMF-UKF-CMA 

algorithm. 

    
  (1) 

The input signal vector um ∈C
L×1 

as, 

   
   (2) 

The Constant Modulus (CM) cost function for 

adaptive beamforming problem can be 

formulated as 

    (3)  

Where p > 0 , q > 0 and ζ is the signal modulus 

of the desired signal sm, which is a known a 

priori. As stated, the optimization problem is 

non-convex and non-linear. 

(III). Algorithm Formulation 

The constant modulus criterion in (3) assumes 

that the unknown system model fm for the 

input signal um is equal to the constant 

modulus of the desired signal ζ in (5). 

   
   (4) 

  
   (5) 

The final state space model is obtained by 

incorporating process noise qm. Since initial 

received signal is unknown, so we take it as 

noise vm adding to the model in (7). Applying 

the non-linearity 
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Where is 

the process noise. In is 

approximated by Symmetric  matrix 

factorization 

   
   (6) 

   
   (7) 

Where 

 are Symmetric matrices and the reduced rank t 

is given by t < min ( s, b ) where (s ,b ,t )∈ R+ 

. In the algorithm formulation, we ignore the 

process noise qm on including leads to 

suboptimal solution. 

(V). Proposed SMF-UKF-CMA Algorithm 

The proposed SMF-UKF-CMA algorithm is as 

follows, 

 

 

 Extract the sigma points 

 as 

Where w ∈ R
nw×1 

is an initial weight vector. 

 Extract matrix Am for the input signal 

um as 

 

And then get the sigma points 

 

For the updated state as 

  (8) 

 Extract the posteriori estimate 

as 

(9) 

Where j denotes the j-th column vector for 

and j—the element for vector 

 

 Extract the sigma priori covariance 

 

(10) 

Where j is the j-th column vector for w−m and 

j-th element for vector w c. 

 Extract the sigma points 

 through Symmetric 

function as 

 (11) 

Where  for each element of the j-

th column vector for  for 

 

 The output sigma points are 

approximated using Symmetric matrix 

factorization algorithm as 

  

 (12) 

Where  are 

Symmetric matrices and reduced rank 

 (13) 
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 The obtained cross covariance matrix 

 as 

 (14) 

 The obtained auto covariance Rmm as 

(15) 

Where  

 Now apply the Kalman innovation 

matrix and the update formulas as 

 (16) 

 (17) 

(18) 

 Update the optimal weight vector  

 

 

 

5 SIMULATION RESULTS 

In this section, we compare the performance of 

the proposed UKF-CMA algorithm with the 

LMS-CMA [6] and RLS-CMA [3] algorithms 

in linear adaptive beamforming application. 

We consider a uniform linear array of 60 

sensors i.e., with spacing   and 

the number of remote sources m to be 4. The 

desired signal was a minimum shift keying 

(MSK) signal with unity modulus and the 

magnitude of the interference signals were set 

equal to the amplitudes of Gaussian noise 

signal with unity variance and their phases 

were set equal to a uniformly distributed noise 

signal in the range of  -pi to pi . 

The direction of arrival of the desired signal 

was set to 10 and for the interference signals 

they were set as -30
o
, -45

o
, and 25, 

respectively. We set p=1since in the 

simulations in [3], [4], this lead LMS-CMA 

and RLS-CMA to achieve the highest signal-

to-interference-plus-noise ratio (SINR). In 

addition to SINR, we used sensor array gain 

[3] and the mean square deviation (MSD), 

where s1,k is the desired signal component in , 

to assess the performance of all the algorithms. 

All curves were obtained by averaging the 

ensemble of 500 independent 

In Experiment 1 we set the variance of the 

white Gaussian measurement noise signal to 

0.1. The SINR, array gain, and MSD plots 

obtained are shown in Fig. 2. In Experiment 2 

we set the variance of the white Gaussian 

measurement noise signal to 0.0316. The 

SINR, array gain, and MSD plots obtained are 

illustrated in Fig. 3. 

As seen from Fig. 2 (a) and Fig. 3(a), the 

proposed UKF-CMA yields a faster 

convergence and a slightly higher steady-state 

SINR compared to LMS-CMA and RLS-

CMA. The plot for LMS-CMA in Fig. 2 (b) is 

obtained after 60,000 iterations at which point 

it achieves similar SINR to the other two 

algorithms. From Fig. 1 (middle) and Fig. 3 

(b), we note that the proposed UKF-CMA 

offers better attenuation in most regions away 

from the desired direction 10 and hence it 

provides more noise reduction compared to 

other algorithms. From Fig. 2 (c) and Fig. 3 

(c), we note that UKF-CMA outperforms the 

other two algorithms in terms of MSD. In 

addition, LMS-CMA outperforms RLS-CMA 

because in RLS-CMA, the gradient vector ( ), 

and subsequently, relies instead of the true 

input signal, which results in larger phase 

distortion. 

 

 

 
Fig.2.Experiment1 (a) SINR in dB algorithm. 
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Fig.2. Experiment1 (b) Sensor array gain in dB 

(middle) algorithm 

 
Fig 2 Experiment 1 (c) MSD in dB (right) of 

the algorithm 

 
Fig.3.Experiment 2 (a) SINR in dB algorithm. 

 

 
Fig.3. Experiment2 (b) Sensor array gain in dB 

(middle) algorithm 

 

 
Fig 3 Experiment 2 (c) MSD in dB (right) of 

the algorithm 

 
Fig 4 Experiment 3: SINR in DB 

 
Fig 5 Experiment 4: SINR in DB 

 

(VI) CONCLUSIONS 

An unscented Kalman filter-based constant 

modulus algorithm for blind adaptive 

beamforming is developed. The proposed 

algorithm considers the output signal as part of 

the state transition equation of the Kalman 

filter. In doing so, it turns out that no a priori 

information about the process noise and 

measurement noise covariance matrices is 

required and furthermore, the modulus of the 

output signal is not required to be 

differentiable with respect to the weight 

vector. Simulation results showed that the 

proposed algorithm offers improved 

performance compared to two other blind 

adaptive beamforming methods, LMS-CMA 

and RLS-CMA. 
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