
National Conference on Emerging Trends in Information, Digital & Embedded Systems(NC’e-TIDES-2016)

International Journal of Advanced Trends in Engineering, Science and Technology(IJATEST)Volume.4,Special Issue.1Dec.2016

www.ijatest.org

 127

Optimizing and Porting the U-Boot bootloader on ARM

Cortex
 KAVITHA (M.Tech) Embedded Systems, AITS, RAJAMPET, INDIA

ABDUL RAHIM, Professor, ECE, AITS, RAJAMPET, INDIA

kavithareddy.bkreddy@gmail.com

Abstract: Some applications have specific requirements for a system’s boot time. Often the system does not need to be

immediately ready for all its tasks, but it should be ready for certain mission-critical tasks (e.g. accepting commands over

Ethernet or displaying a user interface). In this project, we are developing few methodologies and low-hanging fruit for

improving boot time on ARM cortex System. Fast boot is essential for consumer devices in automotive, medical and

entertainment markets. This paper describes “system level” optimization of embedded software to achieve faster boot times.

We select an embedded device running open source Linux platform as the experimental setup for research. First, we

describe an efficient bootloader design and explain how to optimally configure Android’s Linux based kernel for embedded

systems. Next, we detail Linux user space design changes to reach the home screen quickly and allow users to execute

crucial applications first. We also discuss effects on memory consumption, application and feature availability caused by

optimization changes in each part of the software stack. Finally, we show that our optimized application and kernel stack

boots faster than the existing common approach..

Keywords: u boot bot loader, Linux, kernel, optimization techniques, ARM cortex.

I. INTRODUCTION

Linux is the most widely used operating system in

the world of embedded system products. Now a days,

we can’t imagine an embedded system product without

Linux OS. Embedded Linux OS has many befits, by

using Embedded Linux OS, we can accomplish all the

requirements of a real time product, and of course it is

an Open source OS, which allows everyone to access

the source code and modify it, and use it for learning

purpose. Hence the reason, it is very important to think

about the boot time taken by the product to get

stabilized with first screen or readiness to accept user

activities. Boot time is the time taken by the particular

system to show the very first screen when the product

is powered ON, by pushing the power button. This

varies from device to device, For example: to display

first image on the screen for the particular devices

containing a display e.g. iPad, or any hand held

embedded device, media player, cell phone etc

For some applications boot time may be very stringent,

and other products may have specific requirements for

a system to boot. In some products, the system need

not to be immediately ready for all its tasks but it

should be ready for certain tasks.

II.NEED FOR BOOTLOADER

A boot loader is a first program that will take care

various booting process requirements or checks before

actually loading the runtime environment into the

memory after completion of the Power ON Self-Tests

(POST).

For example, to boot ARM Linux, we need a boot

loader, which is a small program that runs before the

main kernel. The expectations of boot loader are to

initialize various devices, and eventually call the Linux

kernel, passing relevant message to the kernel or core

of an operating system.

So, the boot loader should meet (as a minimum) the

below mentioned requirements:

1. Setup and initialize the RAM.

2. Initialize one serial port.

3. Detect the machine type.

4. Setup the kernel tagged list.

5. Load initramfs.

6. Call the kernel image.

1. Setup and initialize RAM

The boot loader is expected to detect and properly

initialize all RAM that the kernel will use for volatile

data storage in the system. It performs this in a

machine dependent manner.

2. Initialize one serial (COM) port

 The boot loader is also responsible to initialize and

enable the serial port with desired baud, stop bits,

parity bits etc., so that the kernel serial driver to

automatically detect which serial port it should use for

the kernel console. The initialized serial port can also

be used for debugging the kernel or any other

application, to understand if anything is blocking or

stopped further execution. Also, the bootloader passes

the “console = ” option to the kernel with serial port

configuration details.

mailto:kavithareddy.bkreddy@gmail.com

National Conference on Emerging Trends in Information, Digital & Embedded Systems(NC’e-TIDES-2016)

International Journal of Advanced Trends in Engineering, Science and Technology(IJATEST)Volume.4,Special Issue.1Dec.2016

www.ijatest.org

 128

3. Detect the machine type

The boot loader should detect the machine type.

Whether it is a hard coded or any other algorithm.

The boot loader should always be able to provide a

MACH_TYPE_xxx value to the kernel. (see

Linux/arch/arm/tools/Mach-types).It should be passed

to the kernel in the register r1.the machine type can be

determined by using a device tree. the machine type

should always set to ones (~0). This is not mandatory

but assures that it will never match any existing type.

4. Setup boot data

The boot loader should provide a tagged list or a dtb

image for sending configuration data to the kernel.

The physical address of the boot data is passed to the

kernel in register r2.

4a. Setup the kernel tagged list

The boot loader should create and initialize the

kernel tagged list. A tagged list must always start with

ATAG_CORE and it should end with ATAG_NONE.

The ATAG_CORE tag may or may not be empty. An

empty tag has the size field is '2' (0x00000002). To

set the size field to zero ATAG_NONE should be used.

In the list any number of tags can be placed .it is

undefined whether a repeated tag appends to the

information which is carried by the previous tag. Few

tags behave as the latter and few tags as former.

The boot loader must pass at a minimum size and

location of the system memory, and root filesystem

location. Therefore, the minimum tagged list should be

as follows:

 +-----------+

base -> | ATAG_CORE | |

 +-----------+ |

 | ATAG_MEM | | increasing

address

 +-----------+ |

 | ATAG_NONE | |

 +-----------+ v

4b. Setup the device tree

The device tree image should load into the system

Ram at a 64bit address and also it should initialize

with the boot data. The kernel will look for the dtb

magic value of 0xd00dfeed at the dtb physical address

to determine whether a dtb has been passed instead of a

tagged list.

The boot loader should pass at a minimum size and

location of the system memory and the root filesystem

location. A safe location is present just above the

128MiB from starting of RAM.

5. Load initramfs.

If an initramfs is in use with the dtb, then it must be

placed in a region of memory where the kernel

decompressor will not overwrite it and also with the

region which will be covered by the low-memory

mapping. A safe location is present above the device

tree blob which itself will be loaded just above the

128MiB boundary from the start of RAM.

6. Calling the kernel image

For calling the kernel zImage there are two options.

1. It is said to be legal for the boot loader to call the

zimage in flash directly only when the zimage is stored

in flash and then it should be linked to be run from

flash

2. The zImage may also be placed in system RAM

and called there. The kernel should be placed in the

first 128MiB of RAM. It is recommended that it is

loaded above 32MiB in order to avoid the need to

relocate

So that it will make the boot process slightly faster.

while booting a non-Zimage the constraints are tighter.

For this case the kernel should be loaded at an offset

from system equal to TEXT_OFFSET –

PAGE_OFFSET

In any case, it should meet the following conditions:

- Quiesce all DMA capable devices so that memory

does not get corrupted by bogus network packets or

disk data. This will save you many hours of debug.

- CPU register settings

 r0 = 0,

 r1 = machine type number.

 r2 = physical address of device tree block (dtb) in

system RAM or physical

 address of tagged list in system RAM

- CPU mode

 All forms of interrupts must be disabled (IRQs and

FIQs) For CPUs which do not include the ARM

virtualization extensions, the CPU must be in SVC

mode. CPUs which include support for the

virtualization extensions can be entered in HYP mode

in order to enable the kernel to make full use of these

extensions. This is the recommended boot method for

such CPUs, for any reason if the kernel is not entered

in HYP mode it must be entered in SVC mode.

- Caches, MMUS

 Instruction cache may be on or off but the MMU

and Data cache must be off. If the kernel is entered in

HYP mode, the above requirements apply to the HYP

mode configuration in addition to the ordinary PL1

(privileged kernel modes) configuration. In addition,

all traps into the hypervisor must be disabled, and PL1

access must be granted for all peripherals and CPU

National Conference on Emerging Trends in Information, Digital & Embedded Systems(NC’e-TIDES-2016)

International Journal of Advanced Trends in Engineering, Science and Technology(IJATEST)Volume.4,Special Issue.1Dec.2016

www.ijatest.org

 129

resources for which this is architecturally possible.

Except for entering in HYP mode, the system

configuration should be such that a kernel which does

not include support for the virtualization extensions

can boot correctly without extra help.

- The boot loader is expected to call the kernel image

by jumping directly to the first instruction of the kernel

image. On CPUs supporting the ARM instruction set,

the entry must be made in ARM state, even for a

Thumb-2 kernel. On CPUs supporting only the Thumb

instruction set such as Cortex-M class CPUs, the entry

must be made in Thumb state.

III HARDWARE AND SOFTWARE PLATFORM

This section describes the ARM hardware and

software background used for this project. While the

first section introduces the hardware details and the

second part is focused on the software platform.

A. ARM Cortex Board

ARM development boards are proven platforms for

accelerating the development and reducing the risk of

new SoC designs. The technology in ARM boards

delivers an optimal solution in terms of speed,

accuracy, flexibility and cost.

As a hardware platform for this project, ARM

Cortex architecture based board, a particular variant of

the Samsung platform has been chosen.

The small and support of many peripherals makes it

an ideal object for this project. The main processing

core is a powerful Cortex-A9 clock runs at 1 GHz

which complies with the ARM Architecture. The

selected Samsung S33C chip is a system-on-chip (SoC)

microprocessor has a variety of typical embedded

system, like a UART, SPI, real-time clock (RTC, 5.5”

LCD Display sub-system, and Audio back-end (ABE)

sub-system. The device also integrates On-chip

memory; External memory interfaces System and

connecting peripherals such as on-board Ethernet, LCD

display controller, Zig-bee, Bluetooth, HDMI and DVI

ports. In addition to these on-chip components, it has 1

GB low power DDR2 RAM and General purpose

expansion header (I2C, GPMC, USB, MMC, DSS and

ETM).

B. Software Platform

The software platform for this project was built with

the help of the build-root and u Boot Bool loader. This

includes everything needed to work with a Linux based

computer system. It has GCC-compiler, boot-loaders,

kernel, and most useful additional libraries and useful

tools like busy-box etc. We can also build manually by

using make utility tool. First download the general

source coder for boot-loaders and kernel and then

cross-compile it to generate boot-loader images

IV. MEASUREMENT AND OPTIMIZATION

A. Initial Measurement:

Boot time Optimization can be measured by

knowing current boot-time, setting the target and

defining the boundary conditions. First we need to

quantify the problem. We could use a stop-watch. But,

that is not very accurate and rather tedious after the

first few runs. A better solution is to instrument the

code or to monitor the boot from outside. We will

describe both techniques, starting with external

monitoring.

The overall boot process involves boot-loader(s),

Linux kernel and the file system. We must identify the

time stampings markers in the boot logs that can be

used as delimiters for each stage of the boot process.

This helps in finding the time spent in each stage of the

boot process.

B. Optimization:

Areas of optimization classified into two categories:

1. Size optimization

 Reduce the size of binaries for each successive

component loaded.

 Remove features that are not required.

2. Speed Optimization

Optimize for target processor.

 Use faster medium for loading primary,

secondary boot loaders and kernel.

 Reduce number of tasks leading to the boot, as

many as possible.

 List and remove features that are not required.

Boot time is affected by different factors such as

hardware, boot loader configurations, kernel

configuration and application profile. We will discuss

various Boot time reduction techniques which will be

used for optimizing Linux in different steps of booting

such as boot loader, Kernel loading, User-space

application initialization and so on.

III. RESULTS

After whole optimization:

National Conference on Emerging Trends in Information, Digital & Embedded Systems(NC’e-TIDES-2016)

International Journal of Advanced Trends in Engineering, Science and Technology(IJATEST)Volume.4,Special Issue.1Dec.2016

www.ijatest.org

 130

Fig: Boot time optimization.

IV. CONCLUSION

Based on detailed experiments on U-Boot bootloader

on ARM cortex architecture based processor, we

conclude that Reduction in code size and Boot Time

depends on various approaches in reducing the code

size which we had used in practical use cases. There

are still enough windows where we can even reduce

more booting time by applying more techniques which

will use on different platform. So, finally we say that

we were able to demonstrate the Reduction in Boot

Time and code size is achieved for a particular

architecture, in our case, it is ARM cortex.

ACKNOWLEDGMENT

We thank to our project guide, Mr. Abdul Rahim

and, for providing necessary facilities towards carrying

out this work. We are also very thankful to Mr S.

Narayana raju, Embedded System Design Specialist,

for all the support in successfully completing this

project. We are also very much thankful to our project

co-ordinator and entire ECE department faculty in

giving the freedom in choosing this project, for

continuous support and encouragement.

REFERENCES

[1] http://www.comptechdoc.org/os/linux/howlinuxworks/linux_

hlbootproc.html.

[2] http://www.linuxinsight.com/proc_uptime.html

[3] http://planet.linaro.org/tag/boot%20time/

[4] http://www.comptechdoc.org/os/linux/howlinuxworks/linux_

hlbootproc.html

[5] http://www.omappedia.com/wiki/4AI.1.4_OMAP4_Icecream

_Sandwich_Panda_Notes

[6] http://www.thegeekstuff.com/2011/02/linux-boot-process/

[7] http://www.ibm.com/developerworks/linux/library/l-

linuxboot/index.html

[8] http://www.linuxtopia.org/online_books/linux_kernel/kernel_

configuration/ch09s04.html

[9] http://elinux.org/Boot_Time

[10] http://processors.wiki.ti.com/index.php/Optimize_Linux_Boo

t_Time

[11] http://www.linuxhomenetworking.com/wiki/index.php/Quick

HOWTO:_Ch15_:_Linux_FTP_Server_Setup#.UZ8F0lo

W2li

[12] http://free-electrons.com/pub/conferences/2011/genivi/boot-

time.pdf

[13] https://www.toradex.com/blog/embedded-linux-boot-time-

optimization

[14] http://processors.wiki.ti.com/index.php/Optimize_Linux_Boo

t_Time

BIOGRAPHY

Sri. KAVITHA, studying Mtech in Embedded Systems,

at AITS, Rajampet, INDIA. Currently she is undergoing

internship training at EmWare Technologies (INDIA)

Pvt Ltd, at Bangalore center. She is expert in embedded

systems peripheral drivers and 8/16/32 architectures etc.

Sri Abdul Rahim, Professor - He is having vast

experience of Industry as well as Academics. He

presented several papers in International and National

Conferences and journals.

http://www.comptechdoc.org/os/linux/howlinuxworks/linux_hlbootproc.html
http://www.comptechdoc.org/os/linux/howlinuxworks/linux_hlbootproc.html
http://www.linuxinsight.com/proc_uptime.html
http://planet.linaro.org/tag/boot%20time/
http://www.comptechdoc.org/os/linux/howlinuxworks/linux_hlbootproc.html
http://www.comptechdoc.org/os/linux/howlinuxworks/linux_hlbootproc.html
http://www.omappedia.com/wiki/4AI.1.4_OMAP4_Icecream_Sandwich_Panda_Notes
http://www.omappedia.com/wiki/4AI.1.4_OMAP4_Icecream_Sandwich_Panda_Notes
http://www.thegeekstuff.com/2011/02/linux-boot-process/
http://www.ibm.com/developerworks/linux/library/l-linuxboot/index.html
http://www.ibm.com/developerworks/linux/library/l-linuxboot/index.html
http://www.linuxtopia.org/online_books/linux_kernel/kernel_configuration/ch09s04.html
http://www.linuxtopia.org/online_books/linux_kernel/kernel_configuration/ch09s04.html
http://elinux.org/Boot_Time
http://processors.wiki.ti.com/index.php/Optimize_Linux_Boot_Time
http://processors.wiki.ti.com/index.php/Optimize_Linux_Boot_Time
http://www.linuxhomenetworking.com/wiki/index.php/Quick_HOWTO_:_Ch15_:_Linux_FTP_Server_Setup#.UZ8F0loW2li
http://www.linuxhomenetworking.com/wiki/index.php/Quick_HOWTO_:_Ch15_:_Linux_FTP_Server_Setup#.UZ8F0loW2li
http://www.linuxhomenetworking.com/wiki/index.php/Quick_HOWTO_:_Ch15_:_Linux_FTP_Server_Setup#.UZ8F0loW2li
http://free-electrons.com/pub/conferences/2011/genivi/boot-time.pdf
http://free-electrons.com/pub/conferences/2011/genivi/boot-time.pdf
https://www.toradex.com/blog/embedded-linux-boot-time-optimization
https://www.toradex.com/blog/embedded-linux-boot-time-optimization
http://processors.wiki.ti.com/index.php/Optimize_Linux_Boot_Time
http://processors.wiki.ti.com/index.php/Optimize_Linux_Boot_Time

