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Abstract:Ant Colony Optimization algorithm, is  a viable method for solving hard combinatorial optimization 

problems. The behaviour of ant colonies is very interesting and highly structured due to the coordinated 

interactions among the ant colonies. Among the ant colonies the communication is limited and therefore the 

coordinated interactions must be a simple flow of informative data. In this paper we investigate the 

implications in the study of  antcolony behaviour  can have on problem solving and optimization by using 

generic ant colony algorithm and modified ant colony algorithm with travelling sales man problem. 
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I.INTRODUCTION 

In Engineering and research, the ant colony 

optimization (ACO) algorithmisa 

probabilistic technique used for solving 

computational problems which can be reduced 

for finding good paths through graphs. 

 The ant colony algorithm is a 

member of family having swarm intelligent 

methods, and it constitutes some meta 

heuristic optimizations. Initially proposed by 

Marco Dorigo in 1992 in his PhD thesis, the 

first algorithm was aiming to search for an 

optimal path in a graph, based on the behavior 

of ants seeking a path between their 

colony and a source of food. The original idea 

has since diversified to solve a wider class of 

numerical problems, and as a result, several 

problems have emerged, drawing on various 

aspects of the behavior of ants. 

SCHEDULING AND ITS TYPES 

In computing, scheduling is the method by 

which threads, processes or data flows are 

given access to system resources (e.g. 

processor time, communications bandwidth). 

This is usually done to load balance and share 

system resources effectively or achieve a 

target quality of service. The need for a 

scheduling algorithm arises from the 

requirement for most modern systems to 

perform multitasking (executing more than 

one process at a time) and multiplexing 

(transmit multiple data streams simultaneously 

across a single physical channel)[8]. 

The scheduler is concerned mainly 

with the throughput (the total number of 

processes that complete their execution per 

time unit), latency (specifically the turnaround 

time, as a total time between submission of a 

process and its completion, and the response 

time, as a time from submission of a process to 

the first time it is scheduled), fairness (equal 

CPU time to each process, or more generally 

appropriate times according to the priority and 

workload of each process), and waiting time 

(the time the process remains in the ready 

queue). In practice, these goals often conflict 

(e.g. throughput versus latency), thus a 

scheduler will implement a suitable 

compromise. Preference is given to any one of 

the concerns mentioned above, depending 

upon the user's needs and objectives. 

In real-time environments, such as 

embedded systems for automatic control in 

industry (for example robotics), the scheduler 

also must ensure that processes can meet 

deadlines; this is crucial for keeping the 

system stable. Scheduled tasks can also be 

distributed to remote devices across a network 

and managed through an administrative back 

end[10]. 

Process scheduler 

The process scheduler is a part of the 

operating system that decides which process 

runs at a certain point in time 

Long-term scheduling 

The long-term scheduler, or admission 
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scheduler, decides which jobs or processes are 

to be admitted to the ready queue (in main 

memory); that is, when an attempt is made to 

execute a program, its admission to the set of 

currently executing processes is 

eitherauthorized or delayed by the long-term 

scheduler. 

Medium-term scheduling 

The medium-term scheduler may decide to 

swap out a process which has not been active 

for some time, or a process which has a low 

priority, or a process which is page faulting 

frequently, or a process which is taking up a 

large amount of memory in order to free up 

main memory for other processes. 

Short-term scheduling 

The short-term scheduler (also known as the 

CPU scheduler) decides which of the ready, 

in-memory processes is to be executed 

(allocated a CPU) after a clock interrupt, an 

I/O interrupt, an operating system call or 

another form of signal. 

Scheduling disciplines 

Scheduling disciplines are algorithms 

used for distributing resources among parties 

which simultaneously and asynchronously 

request them. Scheduling disciplines are used 

in routers(to handle packet traffic) as well as in 

operating systems (to share CPU time among 

both threads and processes), disk drives (I/O 

scheduling), printers (print spooler), most 

embedded systems, etc. 

The main purposes of scheduling algorithms 

are to minimize resource starvation and to 

ensure fairness amongst the parties utilizing 

the resources. Scheduling deals with the 

problem of deciding which of the outstanding 

requests is to be allocated resources. There are 

many different scheduling algorithms. 

 First in first out 

 Earliest deadline first 

 Shortest remaining time 

 Fixed priority pre-emptive scheduling 

 Round-robin scheduling 

 Multilevel queue scheduling 

 Manual scheduling 

II.OPTIMIZATION 

 Although the word ―Optimization‖ 

shares the same route as ―optimal‖, it is rare 

for the process of optimization to produce a 

truly optimal system. The optimized system 

will be typical only be optimal in only one 

application or for one audience[2]. One might 

reduce the amount of time at the price of 

making it consume more memory. In an 

application where memory space is at 

premium, one might deliberately chooses 

lower algorithm in order to use less memory. 

Often there is ―no one size fits all‖ design 

which works well in all cases. So engineers 

make trade of to optimize the attributes of 

greatest interest. Additionally, the effort 

required to make a piece of software 

completely optimal incapable of any further 

improvement of is almost always more than is 

reasonable for the benefits that would be 

accrued. So the process of optimization may 

be halted before a completely optimal solution 

has been reached. Fortunately, it is often the 

cases that the greatest improvements come 

early in the process[2]. 

ANT COLONY OPTIMIZATION: 

 Ant Colony Optimization (ACO) is a 

recently proposed metaheuristic approach for 

solving hard combinatorial optimization 

problems. The inspiring source of ACO is the 

pheromone trail laying and following behavior 

of real ants which use pheromones as a 

communication medium. In analogy to the 

biological example,ACO is based on the 

indirect communication of a colony of simple 

agents, called (artificial) ants, mediated by 

(artificial) pheromone trails. The pheromone 

trails in ACO serve as a distributed, numerical 

information which the ants use to 

probabilistically construct solutions to the 

problem being solved and which the ants adapt 

during the algorithm’s execution to reflect 

their search experience. The first example of 

such an algorithm is Ant System (AS) which 

was proposed using as example application the 

well known Traveling Salesman Problem 

(TSP) .Despite encouraging initial results, AS 

could not compete with state-of-the-art 

algorithms for the TSP. Nevertheless, it had 

the important role of stimulating further 

research on algorithmic variants which obtain 

much better computational performance, as 

well as on applications to a large varietyof 

different problems. In fact, there exists now a 
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considerable amount ofapplications obtaining 

world class performance on problems like the 

quadratic assignment,vehicle routing, 

sequential ordering, scheduling, routing in 

Internet-like networks, and so on .Motivated 

by this success, the ACOmetaheuristic has 

been proposed as a common framework for the 

existingapplications and algorithmic variants. 

Algorithms which follow the ACO 

metaheuristicwill be called in the following 

ACO algorithms[1]. 

 Current applications of ACO 

algorithms fall into the two important problem 

classes of static and dynamic combinatorial 

optimization problems. Static problems are 

those whose topology and cost do not change 

while the problems are being solved. This is 

the case, for example, for the classic TSP, in 

which city locations and intercity distances do 

not change during the algorithm’s run-time. 

Differently, in dynamic problems the topology 

and costs can change while solutions are built. 

An example of such a problem is routing in 

telecommunications networks, in which traffic 

patterns change all the time. The ACO 

algorithms for solving thesetwo classes of 

problems are very similar from a high-level 

perspective, but they differsignificantly in 

implementation details. The ACO 

metaheuristic captures thesedifferences and is 

general enough to comprise the ideas common 

to both applicationtypes. 

 The (artificial) ants in ACO 

implement a randomized construction heuristic 

which makes probabilistic decisions as a 

function of artificial pheromone trails and 

possibly available heuristic information based 

on the input data of the problem to resolved. 

As such, ACO can be interpreted as an 

extension of traditional construction heuristics 

which are readily available for many 

combinatorial optimization problems. Yet, an 

important difference with construction 

heuristics is the adaptation of the pheromone 

trails during algorithm execution to take into 

account the cumulated search experience. 

 Multiprocessor Operating System Types 

Let us now turn from multiprocessor 

hardware to multiprocessor software, in 

particular, multiprocessor operating systems. 

Various organizations are possible. Below we 

will see three of them. 

Each CPU Has Its Own Operating System 

The simplest possible way to organize 

a multiprocessor operating system is to 

statically divide memory into as many 

partitions as there are CPUs and give each 

CPU its own private memory and its own 

private copy of the operating system. In effect, 

the n CPUs then operate as n independent 

computers. One obvious optimization is to 

allow all the CPUs to share the operating 

system code and make private copies of only 

the data. 

This scheme is still better than 

having n separate computers since it allows all 

the machines to share a set of disks and other 

I/O devices, and it also allows the memory to 

be shared flexibly. For example, if one day an 

unusually large program has to be run, one of 

the CPUs can be allocated an extra large 

portion of memory for the duration of that 

program. In addition, processes can efficiently 

communicate with one another by having, say 

a producer be able to write data into memory 

and have a consumer fetch it from the place 

the producer wrote it. 

Still, from an operating systems' 

perspective, having each CPU have its own 

operating system is as primitive as it gets. 

It is worth explicitly mentioning four 

aspects of this design that may not be obvious. 

First, when a process makes a system call, the 

system call is caught and handled on its own 

CPU using the data structures in that operating 

system's tables. 

Second, since each operating system 

has its own tables, it also has its own set of 

processes that it schedules by itself. There is 

no sharing of processes. If a user logs into 

CPU 1, all of his processes run on CPU 1. As a 

consequence, it can happen that CPU 1 is idle 

while CPU 2 is loaded with work. 

Third, there is no sharing of pages. It 

can happen that CPU 1 has pages to spare 

while CPU 2 is paging continuously. There is 

no way for CPU 2 to borrow some pages from 

CPU 1 since the memory allocation is fixed. 

Fourth, and worst, if the operating 

system maintains a buffer cache of recently 

used disk blocks, each operating system does 

this independently of the other ones. Thus it 

can happen that a certain disk block is present 

and dirty in multiple buffer caches at the same 

time, leading to inconsistent results. The only 
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way to avoid this problem is to eliminate the 

buffer caches. Doing so is not hard, but it hurts 

performance considerably. 

Master-Slave Multiprocessors 

For these reasons, this model is rarely 

used any more, although it was used in the 

early days of multiprocessors, when the goal 

was to port existing operating systems to some 

new multiprocessor as fast as possible. Here, 

one copy of the operating system and its tables 

are present on CPU 1 and not on any of the 

others. All system calls are redirected to CPU 

1 for processing there. CPU 1 may also run 

user processes if there is CPU time left over. 

This model is called master-slave since CPU 

1 is the master and all the others are slaves. 

The master-slave model solves most 

of the problems of the first model. There is a 

single data structure (e.g., one list or a set of 

prioritized lists) that keeps track of ready 

processes. When a CPU goes idle, it asks the 

operating system for a process to run and it is 

assigned one. Thus it can never happen that 

one CPU is idle while another is overloaded. 

Similarly, pages can be allocated among all the 

processes dynamically and there is only one 

buffer cache, so inconsistencies never occur. 

The problem with this model is that 

with many CPUs, the master will become a 

bottleneck. After all, it must handle all system 

calls from all CPUs. If, say, 10% of all time is 

spent handling system calls, then 10 CPUs will 

pretty much saturate the master, and with 20 

CPUs it will be completely overloaded. Thus 

this model is simple and workable for small 

multiprocessors, but for large ones it fails. 

Symmetric Multiprocessors 

Our third model, 

the SMP (Symmetric Multi-Processor), 

eliminates this asymmetry. There is one copy 

of the operating system in memory, but any 

CPU can run it. When a system call is made, 

the CPU on which the system call was made 

traps to the kernel and processes the system 

call.  

This model balances processes and 

memory dynamically, since there is only one 

set of operating system tables. It also 

eliminates the master CPU bottleneck, since 

there is no master, but it introduces its own 

problems. In particular, if two or more CPUs 

are running operating system code at the same 

time, disaster will result. Imagine two CPUs 

simultaneously picking the same process to 

run or claiming the same free memory page. 

The simplest way around these problems is to 

associate a mutex (i.e., lock) with the 

operating system, making the whole system 

one big critical region. When a CPU wants to 

run operating system code, it must first acquire 

the mutex. If the mutex is locked, it just waits. 

In this way, any CPU can run the operating 

system, but only one at a time. 

This model works, but is almost as bad 

as the master-slave model. Again, suppose that 

10% of all run time is spent inside the 

operating system. With 20 CPUs, there will be 

long queues of CPUs waiting to get in. 

Fortunately, it is easy to improve. Many parts 

of the operating system are independent of one 

another. For example, there is no problem with 

one CPU running the scheduler while another 

CPU is handling a file system call and a third 

one is processing a page fault. 

This observation leads to splitting the 

operating system up into independent critical 

regions that do not interact with one another. 

Each critical region is protected by its own 

mutex, so only one CPU at a time can execute 

it. In this way, far more parallelism can be 

achieved. However, it may well happen that 

some tables, such as the process table, are used 

by multiple critical regions. For example, the 

process table is needed for scheduling, but also 

for the fork system call and also for signal 

handling. Each table that may be used by 

multiple critical regions needs its own mutex. 

In this way, each critical region can be 

executed by only one CPU at a time and each 

critical table can be accessed by only one CPU 

at a time. 

Most modern multiprocessors use this 

arrangement. The hard part about writing the 

operating system for such a machine is not that 

the actual code is so different from a regular 

operating system. It is not! The hard part is 

splitting it into critical regions that can be 

executed concurrently by different CPUs 

without interfering with one another, not even 

in subtle, indirect ways. In addition, every 

table used by two or more critical regions must 

be separately protected by a mutex and all 

code using the table must use the mutex 

correctly. 

Furthermore, great care must be taken 

to avoid deadlocks. If two critical regions both 
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need table A and table B, and one of them 

claims A first and the other claims B first, 

sooner or later a deadlock will occur and 

nobody will know why. In theory, all the 

tables could be assigned integer values and all 

the critical regions could be required to 

acquire tables in increasing order. This 

strategy avoids deadlocks, but it requires the 

programmer to think very carefully which 

tables each critical region needs to make the 

requests in the right order. 

As the code evolves over time, a 

critical region may need a new table as it did 

not required previously. If the programmer is 

new and does not understand the full logic of 

the system, then the temptation will be to just 

grab the mutex on the table at the point it is 

needed and release it when it is no longer 

needed. How much reasonable this may 

appear, it may lead to deadlocks, which the 

user will perceive as the system is freezing. 

Getting it right is not easy and keeping it right 

over a period of years in the face of changing 

programmers is very difficult. 

Multiprocessor Scheduling 

On a uniprocessor, scheduling is one 

dimensional. The only question that must be 

answered (repeatedly) is: ''Which process 

should be run next?'' On a multiprocessor, 

scheduling is two dimensional. The scheduler 

has to decide which process to run and which 

CPU to run it. This extra dimension greatly 

complicates scheduling on multiprocessors. 

Another complicating factor is that in 

some systems, all the processes are unrelated 

whereas in others they come in groups. An 

example of the former situation is a 

timesharing system in which independent 

users start up independent processes. The 

processes are unrelated and each one can be 

scheduled without regard to the other ones. 

An example of the latter situation 

occurs regularly in program development 

environments. Large systems often consist of 

some number of header files containing 

macros, type definitions, and variable 

declarations that are used by the actual code 

files. When a header file is changed, all the 

code files that include it must be recompiled. 

The program make is commonly used to 

manage development. When make is invoked, 

it starts the compilation of only those code 

files that must be recompiled on account of 

changes to the header or code files. Object 

files that are still valid are not regenerated. 

The original version of make did its 

work sequentially, but newer versions 

designed for multiprocessors can start up all 

the compilations at once. If 10 compilations 

are needed, it does not make sense to schedule 

9 of them quickly and leave the last one until 

much later since the user will not perceive the 

work as completed until the last one finishes. 

In this case it makes sense to regard the 

processes as a group and to take that into 

account when scheduling them. 

III.ALGORITHM 

AboutAnt colony algorithm: 

The ant colony algorithm is an 

algorithm for finding optimal paths that is 

based on the behavior of ants searching for 

food. 

 At first, the ants wander randomly. 

When an ant finds a source of food, it walks 

back to the colony leaving "markers" 

(pheromones) that show the path has food. 

When other ants come across the markers, they 

are likely to follow the path with a certain 

probability. If they do, they then populate the 

path with their own markers as they bring the 

food back. As more ants find the path, it gets 

stronger until there are a couple streams of 

ants traveling to various food sources near the 

colony[1]. Because the ants drop 

pheromones every time they bring food, 

shorter paths are more likely to be stronger, 

hence optimizing the "solution." In the 

meantime, some ants are still randomly 

scouting for closer food sources. A similar 

approach can be used find near-optimal 

solution to the travelling salesman problem[3]. 

Once the food source is depleted, the 

route is no longer populated with pheromones 

and slowly decays. 

Because the ant-colony works on a 

very dynamic system, the ant colony algorithm 

works very well in graphs with changing 

topologies. Examples of such systems include 

computer networks, and artificial intelligence 

simulations of workers[5][6]. 

 Steps of ant colony algorithm: 
• Step 1: Ants information: Here the 

number of nodes, iterations, ants and 

distance is to be considered. The 

equidistance between two nodes is to 

be considered as 
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 distance = √(x1-x2) ^2-(y1-y2) ^2 

• Step 2: Primary placing: Here 

random placing to make a path takes 

place 

• Step 3 : Ants cycle : Here an ant tour 

gets completed and different paths to 

reach destination are generated 

• Step 4 : Ants cost : Among all the 

paths the best path is selected else set 

back to primary placing 

• Step 5 : Ants trace update :   the best 

path chosen is updated and set back to 

step 1 and the process continues again 

Algorithm for ACO with TSP(Travelling 

Sales man problem): 

Step 1: Initialize  

Step2: Place each ant in a randomly chosen 

city 

Step3: Chose next city for each ant 

Step4: More cities to visit: 

 If ―yes‖ goto step3 

 Else goto step 5 

Step5: Return to the initial cities 

Flowchart: 

The flow chart for ACO with TSP 

follows the basic algorithm of ACO. The best 

criteria is to find the best and shortest path to 

visit all the cities with minimal time[3]. This is 

the basic principle to schedule the task in a 

multi processor system 

 

Fig 2.2: Flow chart for ACO with TSP 

Explanation 

The flow chart begins with creating 

number of ants required. The ants will 

randomly choose a path. Since ants cannot 

visualize them, therefore deposit pheromone, a 

chemical deposition on their way to 

destination. The other ants thereby recognize 

the way and reach the destination. Ants smell 

the chemical deposition, if they found that 

pheromone is going to get evaporated the 

succeeding ant will deposit the chemical 

deposition again. This how they make their 

way to destination in order to find their food. 

First to reach the destination they 

randomly chose different paths. If at all they 

find any obstacle they chose different paths 

.once after completing their tour to reach the 

destination, the shortest path to reach the 

destination will be chosen[9]. 

The natural behavior of ants can be shown as 

follows: 



National Conference on Emerging Trends in Information, Digital & Embedded Systems(NC’e-TIDES-2016) 

International Journal of Advanced Trends in Engineering, Science and Technology (IJATEST)Volume.4,Special Issue.1Dec.2016 

www.ijatest.org 
 

116 

 

fig 3.1: Natural behavior of ants 

Applications: 

 

Fig 3.2: The ants prefer the smaller drop of 

honey over the more abundant, but less 

nutritious, sugar 

Ant colony optimization algorithms 

have been applied to many combinatorial 

optimization problems, ranging from quadratic 

assignment to protein folding or routing and a 

lot of derived methods have been adapted to 

dynamic problems in real variables, stochastic 

problems, multi-targets and parallel 

implementations. It has also been used to 

produce near-optimal solutions to the traveling 

salesman problem. They have an advantage 

over simulated annealing and genetic 

algorithm approaches of similar problems 

when the graph may change dynamically; the 

ant colony algorithm can be run continuously 

and adapt to changes in real time. This is of 

interest in network routing and urban 

transportation systems[7]. 

The first ACO algorithm was called 

the Ant system and it was aimed to solve the 

travelling salesman problem, in which the goal 

is to find the shortest round-trip to link a series 

of cities[4]. The general algorithm is relatively 

simple and based on a set of ants, each making 

one of the possible round-trips along the cities. 

At each stage, the ant chooses to move from 

one city to another according to some rules: 

1. It must visit each city exactly once; 

2. A distant city has less chance of being 

chosen (the visibility); 

3. The more intense the pheromone trail 

laid out on an edge between two 

cities, the greater the probability that 

that edge will be chosen; 

4. Having completed its journey, the ant 

deposits more pheromones on all 

edges it traversed, if the journey is 

short; 

5. After each iteration, trails of 

pheromones evaporate. 

 
Fig 3.3: Routing techniques 

Scheduling problems 

 Job-shop scheduling problem (JSP) 

 Open-shop scheduling problem (OSP) 

 Permutation flow shop problem (PFSP) 

 Single machine total tardiness problem 

(SMTTP) 

 Single machine total weighted tardiness 

problem (SMTWTP) 

 Resource-constrained project scheduling 

problem (RCPSP) 

 Group-shop scheduling problem (GSP) 

 Single-machine total tardiness problem 

with sequence dependent setup times 

(SMTTPDST) 

 Multistage Flow shop Scheduling Problem 

(MFSP) with sequence dependent 

setup/changeover times 

Vehicle routing problems 

 Capacitated vehicle routing problem 

(CVRP) 

 Multi-depot vehicle routing problem 

(MDVRP) 

 Period vehicle routing problem (PVRP) 

http://en.wikipedia.org/wiki/File:Knapsack_ants.svg
http://en.wikipedia.org/wiki/File:Aco_TSP.svg
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 Split delivery vehicle routing problem 

(SDVRP) 

 Stochastic vehicle routing problem 

(SVRP) 

 Vehicle routing problem with pick-up and 

delivery (VRPPD) 

 Vehicle routing problem with time 

windows (VRPTW) 

 Time Dependent Vehicle Routing 

Problem with Time Windows 

(TDVRPTW) 

 Vehicle Routing Problem with Time 

Windows and Multiple Service Workers 

(VRPTWMS) 

Assignment problems 

 Quadratic assignment problem (QAP) 

 Generalized assignment problem (GAP) 

 Frequency assignment problem (FAP) 

 Redundancy allocation problem (RAP) 

Set problems 

 Set cover problem (SCP) 

 Partition problem (SPP) 

 Weight constrained graph tree partition 

problem (WCGTPP) 

 Arc-weighted l-cardinality tree problem 

(AWlCTP) 

 Multiple knapsack problem (MKP) 

 Maximum independent set problem (MIS) 

Device Sizing Problems in Nano electronics 

Physical Design 

 Ant Colony Optimization (ACO) based 

optimization of 45 nm CMOS based sense 

amplifier circuit could converge to 

optimal solutions in very minimal time. 

 Ant Colony Optimization (ACO) based 

reversible circuit synthesis could improve 

efficiency significantly. 

IV.EXPERIMENTATION RESULTS 

 In this project the simulation is carried 

out for the optimum task allocation of 

processors using Ant Colony 

Optimization(ACO) based on Travelling 

Salesmen Problem(TSP). For this work 13 

processors are concerned for 

optimizationswhich are referred as nodes. The 

simulation is carried according to the 

algorithm as described in chapter 3. The main 

parameters are alpha, beta& M and they can be 

elaborated as, 

 Alpha = order of effect of ants' sight, 

the number of ants represents number 

of processor in alpha is used to 

monitor the status of the processor. 

 Beta= order of trace's effect, this 

represents total number of processors 

and task allocate to each processor 

considering the time constraints. 

 M= number of ant, where number of 

ants represents numbers of processors 

in a multiprocessor system. 

 Later on the simulation results are 

obtained by varying the alpha, beta &M to 

observe the characteristics of the ACO 

algorithm that how the effects will take place 

in task scheduling for Multi-processor system 

 

Fig (4.1): Alpha=1 

 

 

Fig(4.2): Alpha=10 
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Fig (4.3): Alpha=50 

 

Fig (4.4): Alpha=100 

For initial values of alpha =1 and m= 100 , by 

considering different values of  beta the results 

are obtained 

 

Fig (4.5): Beta=5 

 

Fig (4.6): Beta=15 

 

Fig (4.7): Beta=50 

 

Fig (4.8): Beta=60 

By considering different values of ants i.e.., 

nodes in case of multiprocessor system the 

results are obtained 

 

Fig (4.9): m=100 

 

Fig (4.10): m=400 
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Fig (4.11): m=800 

 

Fig (4.12): m=1000 

V.CONCLUSION 

 Based on the experiments, we can 

conclude that the quality of solutions depends 

on the number of ants. The lower number of 

ants allows the individual to change the path 

much faster. The higher number of ants in 

population causes the higher accumulation of 

pheromone on edges, and thus an individual 

keeps the path with higher concentration of 

pheromone with a high probability. The final 

result differs from optimal solution by 12 km 

(deviation is less than 0-9 %). The great 

advantage over the use of exact methods is that 

ACO algorithm provides relatively good 

results by a comparatively low number of 

iterations, and is therefore able to find an 

acceptable solution in a comparatively short 

time, so it is useable for solving problems 

occurring in practical applications. 

The most widely studied problems 

using ACO algorithms are the traveling 

salesman problem and the quadratic 

assignment problem (QAP). Applications of 

ACO algorithms to the TSP have been 

reviewed in this paper. As in the TSP case, the 

rest application of an ACO algorithm to the 

QAP has been that of Ant System. In the last 

two years several ant and ACO algorithms for 

the QAP have been presented by Maniezzo 

and Colorni, Maniezzo, Gambardella, Taillard, 

and Dorigo, and StÄutzle. Currently, ant 

algorithms are among the best algorithms for 

attacking real-life QAP instances.  
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