
National Conference on Emerging Trends in Information, Digital & Embedded Systems(NC’e-TIDES-2016)

International Journal of Advanced Trends in Engineering, Science and Technology (IJATEST)Volume.4,Special Issue.1Dec.2016

www.ijatest.org

110

Task Scheduling On Multiprocessor System Using Ant Colony

Optimization
B. Karthik

1
, S. Javeed Basha

2
, B. Abdul Rahim

3
, D. Vishnu Vardhan

4

Department of ECE, AITS, Rajampet.
1,2,3

Department of ECE, JNTUACE, Kalikiri.
4

Abstract:Ant Colony Optimization algorithm, is a viable method for solving hard combinatorial optimization

problems. The behaviour of ant colonies is very interesting and highly structured due to the coordinated

interactions among the ant colonies. Among the ant colonies the communication is limited and therefore the

coordinated interactions must be a simple flow of informative data. In this paper we investigate the

implications in the study of antcolony behaviour can have on problem solving and optimization by using

generic ant colony algorithm and modified ant colony algorithm with travelling sales man problem.

Keywords: Scheduling, Optimization, Ant colony optimization, TSP, Multiprocessor system.

I.INTRODUCTION

In Engineering and research, the ant colony

optimization (ACO) algorithmisa

probabilistic technique used for solving

computational problems which can be reduced

for finding good paths through graphs.

 The ant colony algorithm is a

member of family having swarm intelligent

methods, and it constitutes some meta

heuristic optimizations. Initially proposed by

Marco Dorigo in 1992 in his PhD thesis, the

first algorithm was aiming to search for an

optimal path in a graph, based on the behavior

of ants seeking a path between their

colony and a source of food. The original idea

has since diversified to solve a wider class of

numerical problems, and as a result, several

problems have emerged, drawing on various

aspects of the behavior of ants.

SCHEDULING AND ITS TYPES

In computing, scheduling is the method by

which threads, processes or data flows are

given access to system resources (e.g.

processor time, communications bandwidth).

This is usually done to load balance and share

system resources effectively or achieve a

target quality of service. The need for a

scheduling algorithm arises from the

requirement for most modern systems to

perform multitasking (executing more than

one process at a time) and multiplexing

(transmit multiple data streams simultaneously

across a single physical channel)[8].

The scheduler is concerned mainly

with the throughput (the total number of

processes that complete their execution per

time unit), latency (specifically the turnaround

time, as a total time between submission of a

process and its completion, and the response

time, as a time from submission of a process to

the first time it is scheduled), fairness (equal

CPU time to each process, or more generally

appropriate times according to the priority and

workload of each process), and waiting time

(the time the process remains in the ready

queue). In practice, these goals often conflict

(e.g. throughput versus latency), thus a

scheduler will implement a suitable

compromise. Preference is given to any one of

the concerns mentioned above, depending

upon the user's needs and objectives.

In real-time environments, such as

embedded systems for automatic control in

industry (for example robotics), the scheduler

also must ensure that processes can meet

deadlines; this is crucial for keeping the

system stable. Scheduled tasks can also be

distributed to remote devices across a network

and managed through an administrative back

end[10].

Process scheduler

The process scheduler is a part of the

operating system that decides which process

runs at a certain point in time

Long-term scheduling

The long-term scheduler, or admission

National Conference on Emerging Trends in Information, Digital & Embedded Systems(NC’e-TIDES-2016)

International Journal of Advanced Trends in Engineering, Science and Technology (IJATEST)Volume.4,Special Issue.1Dec.2016

www.ijatest.org

111

scheduler, decides which jobs or processes are

to be admitted to the ready queue (in main

memory); that is, when an attempt is made to

execute a program, its admission to the set of

currently executing processes is

eitherauthorized or delayed by the long-term

scheduler.

Medium-term scheduling

The medium-term scheduler may decide to

swap out a process which has not been active

for some time, or a process which has a low

priority, or a process which is page faulting

frequently, or a process which is taking up a

large amount of memory in order to free up

main memory for other processes.

Short-term scheduling

The short-term scheduler (also known as the

CPU scheduler) decides which of the ready,

in-memory processes is to be executed

(allocated a CPU) after a clock interrupt, an

I/O interrupt, an operating system call or

another form of signal.

Scheduling disciplines

Scheduling disciplines are algorithms

used for distributing resources among parties

which simultaneously and asynchronously

request them. Scheduling disciplines are used

in routers(to handle packet traffic) as well as in

operating systems (to share CPU time among

both threads and processes), disk drives (I/O

scheduling), printers (print spooler), most

embedded systems, etc.

The main purposes of scheduling algorithms

are to minimize resource starvation and to

ensure fairness amongst the parties utilizing

the resources. Scheduling deals with the

problem of deciding which of the outstanding

requests is to be allocated resources. There are

many different scheduling algorithms.

 First in first out

 Earliest deadline first

 Shortest remaining time

 Fixed priority pre-emptive scheduling

 Round-robin scheduling

 Multilevel queue scheduling

 Manual scheduling

II.OPTIMIZATION

 Although the word ―Optimization‖

shares the same route as ―optimal‖, it is rare

for the process of optimization to produce a

truly optimal system. The optimized system

will be typical only be optimal in only one

application or for one audience[2]. One might

reduce the amount of time at the price of

making it consume more memory. In an

application where memory space is at

premium, one might deliberately chooses

lower algorithm in order to use less memory.

Often there is ―no one size fits all‖ design

which works well in all cases. So engineers

make trade of to optimize the attributes of

greatest interest. Additionally, the effort

required to make a piece of software

completely optimal incapable of any further

improvement of is almost always more than is

reasonable for the benefits that would be

accrued. So the process of optimization may

be halted before a completely optimal solution

has been reached. Fortunately, it is often the

cases that the greatest improvements come

early in the process[2].

ANT COLONY OPTIMIZATION:

 Ant Colony Optimization (ACO) is a

recently proposed metaheuristic approach for

solving hard combinatorial optimization

problems. The inspiring source of ACO is the

pheromone trail laying and following behavior

of real ants which use pheromones as a

communication medium. In analogy to the

biological example,ACO is based on the

indirect communication of a colony of simple

agents, called (artificial) ants, mediated by

(artificial) pheromone trails. The pheromone

trails in ACO serve as a distributed, numerical

information which the ants use to

probabilistically construct solutions to the

problem being solved and which the ants adapt

during the algorithm’s execution to reflect

their search experience. The first example of

such an algorithm is Ant System (AS) which

was proposed using as example application the

well known Traveling Salesman Problem

(TSP) .Despite encouraging initial results, AS

could not compete with state-of-the-art

algorithms for the TSP. Nevertheless, it had

the important role of stimulating further

research on algorithmic variants which obtain

much better computational performance, as

well as on applications to a large varietyof

different problems. In fact, there exists now a

National Conference on Emerging Trends in Information, Digital & Embedded Systems(NC’e-TIDES-2016)

International Journal of Advanced Trends in Engineering, Science and Technology (IJATEST)Volume.4,Special Issue.1Dec.2016

www.ijatest.org

112

considerable amount ofapplications obtaining

world class performance on problems like the

quadratic assignment,vehicle routing,

sequential ordering, scheduling, routing in

Internet-like networks, and so on .Motivated

by this success, the ACOmetaheuristic has

been proposed as a common framework for the

existingapplications and algorithmic variants.

Algorithms which follow the ACO

metaheuristicwill be called in the following

ACO algorithms[1].

 Current applications of ACO

algorithms fall into the two important problem

classes of static and dynamic combinatorial

optimization problems. Static problems are

those whose topology and cost do not change

while the problems are being solved. This is

the case, for example, for the classic TSP, in

which city locations and intercity distances do

not change during the algorithm’s run-time.

Differently, in dynamic problems the topology

and costs can change while solutions are built.

An example of such a problem is routing in

telecommunications networks, in which traffic

patterns change all the time. The ACO

algorithms for solving thesetwo classes of

problems are very similar from a high-level

perspective, but they differsignificantly in

implementation details. The ACO

metaheuristic captures thesedifferences and is

general enough to comprise the ideas common

to both applicationtypes.

 The (artificial) ants in ACO

implement a randomized construction heuristic

which makes probabilistic decisions as a

function of artificial pheromone trails and

possibly available heuristic information based

on the input data of the problem to resolved.

As such, ACO can be interpreted as an

extension of traditional construction heuristics

which are readily available for many

combinatorial optimization problems. Yet, an

important difference with construction

heuristics is the adaptation of the pheromone

trails during algorithm execution to take into

account the cumulated search experience.

 Multiprocessor Operating System Types

Let us now turn from multiprocessor

hardware to multiprocessor software, in

particular, multiprocessor operating systems.

Various organizations are possible. Below we

will see three of them.

Each CPU Has Its Own Operating System

The simplest possible way to organize

a multiprocessor operating system is to

statically divide memory into as many

partitions as there are CPUs and give each

CPU its own private memory and its own

private copy of the operating system. In effect,

the n CPUs then operate as n independent

computers. One obvious optimization is to

allow all the CPUs to share the operating

system code and make private copies of only

the data.

This scheme is still better than

having n separate computers since it allows all

the machines to share a set of disks and other

I/O devices, and it also allows the memory to

be shared flexibly. For example, if one day an

unusually large program has to be run, one of

the CPUs can be allocated an extra large

portion of memory for the duration of that

program. In addition, processes can efficiently

communicate with one another by having, say

a producer be able to write data into memory

and have a consumer fetch it from the place

the producer wrote it.

Still, from an operating systems'

perspective, having each CPU have its own

operating system is as primitive as it gets.

It is worth explicitly mentioning four

aspects of this design that may not be obvious.

First, when a process makes a system call, the

system call is caught and handled on its own

CPU using the data structures in that operating

system's tables.

Second, since each operating system

has its own tables, it also has its own set of

processes that it schedules by itself. There is

no sharing of processes. If a user logs into

CPU 1, all of his processes run on CPU 1. As a

consequence, it can happen that CPU 1 is idle

while CPU 2 is loaded with work.

Third, there is no sharing of pages. It

can happen that CPU 1 has pages to spare

while CPU 2 is paging continuously. There is

no way for CPU 2 to borrow some pages from

CPU 1 since the memory allocation is fixed.

Fourth, and worst, if the operating

system maintains a buffer cache of recently

used disk blocks, each operating system does

this independently of the other ones. Thus it

can happen that a certain disk block is present

and dirty in multiple buffer caches at the same

time, leading to inconsistent results. The only

National Conference on Emerging Trends in Information, Digital & Embedded Systems(NC’e-TIDES-2016)

International Journal of Advanced Trends in Engineering, Science and Technology (IJATEST)Volume.4,Special Issue.1Dec.2016

www.ijatest.org

113

way to avoid this problem is to eliminate the

buffer caches. Doing so is not hard, but it hurts

performance considerably.

Master-Slave Multiprocessors

For these reasons, this model is rarely

used any more, although it was used in the

early days of multiprocessors, when the goal

was to port existing operating systems to some

new multiprocessor as fast as possible. Here,

one copy of the operating system and its tables

are present on CPU 1 and not on any of the

others. All system calls are redirected to CPU

1 for processing there. CPU 1 may also run

user processes if there is CPU time left over.

This model is called master-slave since CPU

1 is the master and all the others are slaves.

The master-slave model solves most

of the problems of the first model. There is a

single data structure (e.g., one list or a set of

prioritized lists) that keeps track of ready

processes. When a CPU goes idle, it asks the

operating system for a process to run and it is

assigned one. Thus it can never happen that

one CPU is idle while another is overloaded.

Similarly, pages can be allocated among all the

processes dynamically and there is only one

buffer cache, so inconsistencies never occur.

The problem with this model is that

with many CPUs, the master will become a

bottleneck. After all, it must handle all system

calls from all CPUs. If, say, 10% of all time is

spent handling system calls, then 10 CPUs will

pretty much saturate the master, and with 20

CPUs it will be completely overloaded. Thus

this model is simple and workable for small

multiprocessors, but for large ones it fails.

Symmetric Multiprocessors

Our third model,

the SMP (Symmetric Multi-Processor),

eliminates this asymmetry. There is one copy

of the operating system in memory, but any

CPU can run it. When a system call is made,

the CPU on which the system call was made

traps to the kernel and processes the system

call.

This model balances processes and

memory dynamically, since there is only one

set of operating system tables. It also

eliminates the master CPU bottleneck, since

there is no master, but it introduces its own

problems. In particular, if two or more CPUs

are running operating system code at the same

time, disaster will result. Imagine two CPUs

simultaneously picking the same process to

run or claiming the same free memory page.

The simplest way around these problems is to

associate a mutex (i.e., lock) with the

operating system, making the whole system

one big critical region. When a CPU wants to

run operating system code, it must first acquire

the mutex. If the mutex is locked, it just waits.

In this way, any CPU can run the operating

system, but only one at a time.

This model works, but is almost as bad

as the master-slave model. Again, suppose that

10% of all run time is spent inside the

operating system. With 20 CPUs, there will be

long queues of CPUs waiting to get in.

Fortunately, it is easy to improve. Many parts

of the operating system are independent of one

another. For example, there is no problem with

one CPU running the scheduler while another

CPU is handling a file system call and a third

one is processing a page fault.

This observation leads to splitting the

operating system up into independent critical

regions that do not interact with one another.

Each critical region is protected by its own

mutex, so only one CPU at a time can execute

it. In this way, far more parallelism can be

achieved. However, it may well happen that

some tables, such as the process table, are used

by multiple critical regions. For example, the

process table is needed for scheduling, but also

for the fork system call and also for signal

handling. Each table that may be used by

multiple critical regions needs its own mutex.

In this way, each critical region can be

executed by only one CPU at a time and each

critical table can be accessed by only one CPU

at a time.

Most modern multiprocessors use this

arrangement. The hard part about writing the

operating system for such a machine is not that

the actual code is so different from a regular

operating system. It is not! The hard part is

splitting it into critical regions that can be

executed concurrently by different CPUs

without interfering with one another, not even

in subtle, indirect ways. In addition, every

table used by two or more critical regions must

be separately protected by a mutex and all

code using the table must use the mutex

correctly.

Furthermore, great care must be taken

to avoid deadlocks. If two critical regions both

National Conference on Emerging Trends in Information, Digital & Embedded Systems(NC’e-TIDES-2016)

International Journal of Advanced Trends in Engineering, Science and Technology (IJATEST)Volume.4,Special Issue.1Dec.2016

www.ijatest.org

114

need table A and table B, and one of them

claims A first and the other claims B first,

sooner or later a deadlock will occur and

nobody will know why. In theory, all the

tables could be assigned integer values and all

the critical regions could be required to

acquire tables in increasing order. This

strategy avoids deadlocks, but it requires the

programmer to think very carefully which

tables each critical region needs to make the

requests in the right order.

As the code evolves over time, a

critical region may need a new table as it did

not required previously. If the programmer is

new and does not understand the full logic of

the system, then the temptation will be to just

grab the mutex on the table at the point it is

needed and release it when it is no longer

needed. How much reasonable this may

appear, it may lead to deadlocks, which the

user will perceive as the system is freezing.

Getting it right is not easy and keeping it right

over a period of years in the face of changing

programmers is very difficult.

Multiprocessor Scheduling

On a uniprocessor, scheduling is one

dimensional. The only question that must be

answered (repeatedly) is: ''Which process

should be run next?'' On a multiprocessor,

scheduling is two dimensional. The scheduler

has to decide which process to run and which

CPU to run it. This extra dimension greatly

complicates scheduling on multiprocessors.

Another complicating factor is that in

some systems, all the processes are unrelated

whereas in others they come in groups. An

example of the former situation is a

timesharing system in which independent

users start up independent processes. The

processes are unrelated and each one can be

scheduled without regard to the other ones.

An example of the latter situation

occurs regularly in program development

environments. Large systems often consist of

some number of header files containing

macros, type definitions, and variable

declarations that are used by the actual code

files. When a header file is changed, all the

code files that include it must be recompiled.

The program make is commonly used to

manage development. When make is invoked,

it starts the compilation of only those code

files that must be recompiled on account of

changes to the header or code files. Object

files that are still valid are not regenerated.

The original version of make did its

work sequentially, but newer versions

designed for multiprocessors can start up all

the compilations at once. If 10 compilations

are needed, it does not make sense to schedule

9 of them quickly and leave the last one until

much later since the user will not perceive the

work as completed until the last one finishes.

In this case it makes sense to regard the

processes as a group and to take that into

account when scheduling them.

III.ALGORITHM

AboutAnt colony algorithm:

The ant colony algorithm is an

algorithm for finding optimal paths that is

based on the behavior of ants searching for

food.

 At first, the ants wander randomly.

When an ant finds a source of food, it walks

back to the colony leaving "markers"

(pheromones) that show the path has food.

When other ants come across the markers, they

are likely to follow the path with a certain

probability. If they do, they then populate the

path with their own markers as they bring the

food back. As more ants find the path, it gets

stronger until there are a couple streams of

ants traveling to various food sources near the

colony[1]. Because the ants drop

pheromones every time they bring food,

shorter paths are more likely to be stronger,

hence optimizing the "solution." In the

meantime, some ants are still randomly

scouting for closer food sources. A similar

approach can be used find near-optimal

solution to the travelling salesman problem[3].

Once the food source is depleted, the

route is no longer populated with pheromones

and slowly decays.

Because the ant-colony works on a

very dynamic system, the ant colony algorithm

works very well in graphs with changing

topologies. Examples of such systems include

computer networks, and artificial intelligence

simulations of workers[5][6].

 Steps of ant colony algorithm:
• Step 1: Ants information: Here the

number of nodes, iterations, ants and

distance is to be considered. The

equidistance between two nodes is to

be considered as

National Conference on Emerging Trends in Information, Digital & Embedded Systems(NC’e-TIDES-2016)

International Journal of Advanced Trends in Engineering, Science and Technology (IJATEST)Volume.4,Special Issue.1Dec.2016

www.ijatest.org

115

 distance = √(x1-x2) ^2-(y1-y2) ^2

• Step 2: Primary placing: Here

random placing to make a path takes

place

• Step 3 : Ants cycle : Here an ant tour

gets completed and different paths to

reach destination are generated

• Step 4 : Ants cost : Among all the

paths the best path is selected else set

back to primary placing

• Step 5 : Ants trace update : the best

path chosen is updated and set back to

step 1 and the process continues again

Algorithm for ACO with TSP(Travelling

Sales man problem):

Step 1: Initialize

Step2: Place each ant in a randomly chosen

city

Step3: Chose next city for each ant

Step4: More cities to visit:

 If ―yes‖ goto step3

 Else goto step 5

Step5: Return to the initial cities

Flowchart:

The flow chart for ACO with TSP

follows the basic algorithm of ACO. The best

criteria is to find the best and shortest path to

visit all the cities with minimal time[3]. This is

the basic principle to schedule the task in a

multi processor system

Fig 2.2: Flow chart for ACO with TSP

Explanation

The flow chart begins with creating

number of ants required. The ants will

randomly choose a path. Since ants cannot

visualize them, therefore deposit pheromone, a

chemical deposition on their way to

destination. The other ants thereby recognize

the way and reach the destination. Ants smell

the chemical deposition, if they found that

pheromone is going to get evaporated the

succeeding ant will deposit the chemical

deposition again. This how they make their

way to destination in order to find their food.

First to reach the destination they

randomly chose different paths. If at all they

find any obstacle they chose different paths

.once after completing their tour to reach the

destination, the shortest path to reach the

destination will be chosen[9].

The natural behavior of ants can be shown as

follows:

National Conference on Emerging Trends in Information, Digital & Embedded Systems(NC’e-TIDES-2016)

International Journal of Advanced Trends in Engineering, Science and Technology (IJATEST)Volume.4,Special Issue.1Dec.2016

www.ijatest.org

116

fig 3.1: Natural behavior of ants

Applications:

Fig 3.2: The ants prefer the smaller drop of

honey over the more abundant, but less

nutritious, sugar

Ant colony optimization algorithms

have been applied to many combinatorial

optimization problems, ranging from quadratic

assignment to protein folding or routing and a

lot of derived methods have been adapted to

dynamic problems in real variables, stochastic

problems, multi-targets and parallel

implementations. It has also been used to

produce near-optimal solutions to the traveling

salesman problem. They have an advantage

over simulated annealing and genetic

algorithm approaches of similar problems

when the graph may change dynamically; the

ant colony algorithm can be run continuously

and adapt to changes in real time. This is of

interest in network routing and urban

transportation systems[7].

The first ACO algorithm was called

the Ant system and it was aimed to solve the

travelling salesman problem, in which the goal

is to find the shortest round-trip to link a series

of cities[4]. The general algorithm is relatively

simple and based on a set of ants, each making

one of the possible round-trips along the cities.

At each stage, the ant chooses to move from

one city to another according to some rules:

1. It must visit each city exactly once;

2. A distant city has less chance of being

chosen (the visibility);

3. The more intense the pheromone trail

laid out on an edge between two

cities, the greater the probability that

that edge will be chosen;

4. Having completed its journey, the ant

deposits more pheromones on all

edges it traversed, if the journey is

short;

5. After each iteration, trails of

pheromones evaporate.

Fig 3.3: Routing techniques

Scheduling problems

 Job-shop scheduling problem (JSP)

 Open-shop scheduling problem (OSP)

 Permutation flow shop problem (PFSP)

 Single machine total tardiness problem

(SMTTP)

 Single machine total weighted tardiness

problem (SMTWTP)

 Resource-constrained project scheduling

problem (RCPSP)

 Group-shop scheduling problem (GSP)

 Single-machine total tardiness problem

with sequence dependent setup times

(SMTTPDST)

 Multistage Flow shop Scheduling Problem

(MFSP) with sequence dependent

setup/changeover times

Vehicle routing problems

 Capacitated vehicle routing problem

(CVRP)

 Multi-depot vehicle routing problem

(MDVRP)

 Period vehicle routing problem (PVRP)

http://en.wikipedia.org/wiki/File:Knapsack_ants.svg
http://en.wikipedia.org/wiki/File:Aco_TSP.svg

National Conference on Emerging Trends in Information, Digital & Embedded Systems(NC’e-TIDES-2016)

International Journal of Advanced Trends in Engineering, Science and Technology (IJATEST)Volume.4,Special Issue.1Dec.2016

www.ijatest.org

117

 Split delivery vehicle routing problem

(SDVRP)

 Stochastic vehicle routing problem

(SVRP)

 Vehicle routing problem with pick-up and

delivery (VRPPD)

 Vehicle routing problem with time

windows (VRPTW)

 Time Dependent Vehicle Routing

Problem with Time Windows

(TDVRPTW)

 Vehicle Routing Problem with Time

Windows and Multiple Service Workers

(VRPTWMS)

Assignment problems

 Quadratic assignment problem (QAP)

 Generalized assignment problem (GAP)

 Frequency assignment problem (FAP)

 Redundancy allocation problem (RAP)

Set problems

 Set cover problem (SCP)

 Partition problem (SPP)

 Weight constrained graph tree partition

problem (WCGTPP)

 Arc-weighted l-cardinality tree problem

(AWlCTP)

 Multiple knapsack problem (MKP)

 Maximum independent set problem (MIS)

Device Sizing Problems in Nano electronics

Physical Design

 Ant Colony Optimization (ACO) based

optimization of 45 nm CMOS based sense

amplifier circuit could converge to

optimal solutions in very minimal time.

 Ant Colony Optimization (ACO) based

reversible circuit synthesis could improve

efficiency significantly.

IV.EXPERIMENTATION RESULTS

 In this project the simulation is carried

out for the optimum task allocation of

processors using Ant Colony

Optimization(ACO) based on Travelling

Salesmen Problem(TSP). For this work 13

processors are concerned for

optimizationswhich are referred as nodes. The

simulation is carried according to the

algorithm as described in chapter 3. The main

parameters are alpha, beta& M and they can be

elaborated as,

 Alpha = order of effect of ants' sight,

the number of ants represents number

of processor in alpha is used to

monitor the status of the processor.

 Beta= order of trace's effect, this

represents total number of processors

and task allocate to each processor

considering the time constraints.

 M= number of ant, where number of

ants represents numbers of processors

in a multiprocessor system.

 Later on the simulation results are

obtained by varying the alpha, beta &M to

observe the characteristics of the ACO

algorithm that how the effects will take place

in task scheduling for Multi-processor system

Fig (4.1): Alpha=1

Fig(4.2): Alpha=10

National Conference on Emerging Trends in Information, Digital & Embedded Systems(NC’e-TIDES-2016)

International Journal of Advanced Trends in Engineering, Science and Technology (IJATEST)Volume.4,Special Issue.1Dec.2016

www.ijatest.org

118

Fig (4.3): Alpha=50

Fig (4.4): Alpha=100

For initial values of alpha =1 and m= 100 , by

considering different values of beta the results

are obtained

Fig (4.5): Beta=5

Fig (4.6): Beta=15

Fig (4.7): Beta=50

Fig (4.8): Beta=60

By considering different values of ants i.e..,

nodes in case of multiprocessor system the

results are obtained

Fig (4.9): m=100

Fig (4.10): m=400

National Conference on Emerging Trends in Information, Digital & Embedded Systems(NC’e-TIDES-2016)

International Journal of Advanced Trends in Engineering, Science and Technology (IJATEST)Volume.4,Special Issue.1Dec.2016

www.ijatest.org

119

Fig (4.11): m=800

Fig (4.12): m=1000

V.CONCLUSION

 Based on the experiments, we can

conclude that the quality of solutions depends

on the number of ants. The lower number of

ants allows the individual to change the path

much faster. The higher number of ants in

population causes the higher accumulation of

pheromone on edges, and thus an individual

keeps the path with higher concentration of

pheromone with a high probability. The final

result differs from optimal solution by 12 km

(deviation is less than 0-9 %). The great

advantage over the use of exact methods is that

ACO algorithm provides relatively good

results by a comparatively low number of

iterations, and is therefore able to find an

acceptable solution in a comparatively short

time, so it is useable for solving problems

occurring in practical applications.

The most widely studied problems

using ACO algorithms are the traveling

salesman problem and the quadratic

assignment problem (QAP). Applications of

ACO algorithms to the TSP have been

reviewed in this paper. As in the TSP case, the

rest application of an ACO algorithm to the

QAP has been that of Ant System. In the last

two years several ant and ACO algorithms for

the QAP have been presented by Maniezzo

and Colorni, Maniezzo, Gambardella, Taillard,

and Dorigo, and StÄutzle. Currently, ant

algorithms are among the best algorithms for

attacking real-life QAP instances.

REFERENCES
1. A. Colorni, M. Dorigo et V.

Maniezzo, Distributed Optimization by Ant Colonies,

actes de la première conférenceeuropéenne sur la vie

artificielle, Paris, France, Elsevier Publishing, 134-142,

1991.

2. . Dorigo, Optimization, Learning and Natural

Algorithms, PhD thesis, Politecnico di Milano, Italy,

1992.

3. T. Stützle et H.H. Hoos, MAX MIN Ant

System, Future Generation Computer Systems, volume

16, pages 889-914M, 2000

4. M. Dorigo et L.M. Gambardella, Ant Colony

System : A Cooperative Learning Approach to the

Traveling Salesman Problem, IEEE Transactions on

Evolutionary Computation, volume 1, numéro 1, pages

53-66, 1997.

5. Gupta, D.K.; Arora, Y.; Singh, U.K.; Gupta,

J.P., "Recursive Ant Colony Optimization for estimation

of parameters of a function," Recent Advances in

Information Technology (RAIT), 2012 1st International

Conference on , vol., no., pp.448-454, 15–17 March 2012

6. Gupta, D.K.; Gupta, J.P.; Arora, Y.; Shankar,

U., "Recursive ant colony optimization: a new technique

for the estimation of function parameters from

geophysical field data," Near Surface Geophysics , vol.

11, no. 3, pp.325-339

7. M. Zlochin, M. Birattari, N. Meuleau, et M.

Dorigo, Model-based search for combinatorial

optimization: A critical survey, Annals of Operations

Research, vol. 131, pp. 373-395, 2004.

8. V.K.Ojha, A. Abraham and V. Snasel, ACO

for Continuous Function Optimization: A Performance

Analysis, 14th International Conference on Intelligent

Systems Design and Applications (ISDA), Japan, Page

145 - 150 978-1-4799-7938-7/14 2014 IEEE

9. M. Dorigo, V. Maniezzo, et A. Colorni, Ant

system: optimization by a colony of cooperating agents,

IEEE Transactions on Systems, Man, and Cybernetics--

Part B , volume 26, numéro 1, pages 29-41, 1996.

10. D. Martens, M. De Backer, R. Haesen, J.

Vanthienen, M. Snoeck, B. Baesens,Classification with

Ant Colony Optimization, IEEE Transactions on

Evolutionary Computation, volume 11, number 5, pages

651—665, 2007.

