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Abstract -- Embedded systems are typically designed for one or a few target applications, allowing for customization of the 

system architecture for the desired system goals such as performance, power and cost. The memory subsystem will continue to 

present significant bottlenecks in the design of future embedded systems-on-chip. Using advance knowledge of the 

application’s instruction and data behavior, it is possible to customize the memory architecture to meet varying system goals. 

On one hand, different applications exhibit varying memory behavior. On the other hand, a large variety of memory modules 

allow design implementations with a wide range of cost, performance and power profiles. The embedded system architect can 

thus explore and select custom memory architectures to fit the constraints of target applications and design goals. In this 

paper we present an overview of recent research in the area of memory architecture customization for embedded systems.  
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I. INTRODUCTION  

system-on-chip includes the modem, radio 

transceiver, power management functionality, a 

multimedia engine and security features, all on the 

same chip. The mobile space has led to a huge 

requirement in the throughput enhancement of the 

memory subsystem; the mobile world moving towards 

64-bit architectures, UHD video streaming, secure 

video playback, IOT connecting all the electronic 

gadgets etc further strengthens the need of a very 

efficient memory subsystem. The exploration space of 

different possible memory architectures is vast, and 

there have been attempts to automate or semi-automate 

this exploration process . The memory architecture of 

an embedded processor core is complex and is custom 

de-signed to improve run-time performance and power 

consumption.DSP applications are more data 

dominated than the control-dominated software 
executed on an MCU. 

The memory subsystem is an important and 

interesting component of system designs that can 

benefit from customization. The memory can be 

selectively cached; the cache line size can be 

determined by the application; the designer can opt to 

discard the cache completely and choose specialized 

memory configurations such as FIFOs and stream 

buffers. The application-specific nature of embedded 

systems has caused a fresh look at architectural issues 

in recent times. Embedded systems implement a fixed 

application or set of related applications; consequently, 

the system architecture can be customized to suit the 

needs of the given application. This results in an 

architectural optimization strategy that is 

fundamentally different from that employed for general 
purpose processors. In  

the case of general purpose computer systems, the 

actual use to which the system will be put is not 

known, so the processors are designed for good 

average performance over a set of typical benchmark 

programs which cover a wide range of application with 

different behaviors. In embedded systems, the features 

of the given application can be used to determine the 

architectural parameters. This becomes very important 

in modern embedded systems where power 

consumption is a crucial factor. For example, if an 

application does not use floating point arithmetic, then 

the floating point unit can be removed from the 

processor, thereby saving area and power in the 

implementation.  

 Memory issues have been separately addressed by 

disparate research groups: computer architects, 

compiler writers, and the embedded systems 

community. Memory architectures have been studied 

extensively by computer architects. Memory hierarchy, 

implemented with cache structures, has received 

considerable attention from researchers. Cache 

parameters such as line size, associatively, and write 
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policy, and their impact on typical applications have 
been studied in detail . 

Recent studies have also quantified the impact of 

dynamic memory (DRAM) architectures. Since 

architectures are closely associated with compilation 

issues, compiler researchers have addressed the 

problem of generating efficient code for a given 

memory architecture by appropriately transforming the 

program and data. Compiler transformations such as 

blocking/tiling are examples of such optimizations .  

Finally, researchers in the area of embedded systems 

have typically employed memory structures such as 

register files, static memory (SRAMs), and DRAMs in 

generating application specific designs. Those 

optimizations need to be integrated into the embedded 

system design process as well as enhanced with new 

optimization and estimation techniques. We first 

present an overview of different memory architectures 

used in embedded systems, and then survey some of 

the ways in which these architectures have been 

customized. 

 

II.  EMBEDDED MEMORY ARCHITECTURES 

i) Caches 

As application-specific systems use a processor core 

as a building block, the natural extension in terms of 

memory architecture was the addition of instruction 

and data caches. Since the organization of typical 

caches is well known [1] we will omit the explanation. 

Caches have many parameters which can be 

customized for a given application. Some of these 

customizations are described in Section 3. 

 

ii) Scratch-Pad Memory 

 A scratch-pad memory storing a small amount of 

frequently accessed data on-chip has an equivalent in 

the instruction cache.An embedded system designer is 

not restricted to using only a traditional cached 

memory architecture. Since the design needs to execute 

only a single application, we can use unconventional 

architectural variations that suit the specific application 

under consideration.  

 One such design alternative is Scratch Pad memory 

[6]. Scratch-Pad memory refers to data memory 

residing on-chip, that is mapped into an address space 

disjoint from the off-chip memory, but connected to the 

same address and data buses. Both the cache and 

Scratch-Pad memory (usually SRAM) allow fast access 

to their residing data, whereas an access to the off-chip 

memory requires relatively longer access times. The 

main difference between the Scratch-Pad SRAM and 

data cache is that the SRAM guarantees a singlecycle 

access time, whereas an access to the cache is subject 

to cache misses. The concept of Scratch Pad memory is 

an important architectural consideration in modern 

embedded systems, where advances in embedded 

DRAM technology have made it possible to combine 

DRAM and logic on the same chip.  

  

 

 

Fig. 1. Block Diagram of Typical Embedded Processor 

with Scratch-Pad Memory 

 

Since data stored in embedded DRAM can be accessed 

much faster and in a more powerefficient manner than 

that in off-chip DRAM, a related optimization problem 

that arises in this context is how to identify critical data 

in an application, for storage in on-chip memory. 

Figure 1 shows the architectural block diagram of an 

application employing a typical embedded core 

processor 1, where the parts enclosed in the dotted 

rectangle are implemented in one chip[2], interfacing 

with an off-chip memory, usually realized with 

DRAM. The address and data buses from the CPU core 

connect to the Data Cache, Scratch-Pad memory, and 

the External Memory Interface (EMI) blocks. On a 

memory access request from the CPU, the data cache 

indicates a cache hit to the EMI block through the C 

HIT signal. Similarly, if the SRAM interface circuitry 

in the Scratch-Pad memory determines that the 

referenced memory address maps into the on-chip 

SRAM, it assumes control of the data bus and indicates 

this status to the EMI through signal S HIT. If both the 

cache and SRAM report misses, the EMI transfers a 

block of data of the appropriate size (equal to the cache 

line size) between the cache and the DRAM.  

 One possible data address space mapping for this 

memory configuration is shown in  Figure 2, for a 

sample addressable memory of size N data words. 

Memory addresses 0 ...(P − 1) map into the on-chip 

scratch pad memory, and have a single processor cycle 

access time. Memory addresses P ...(N − 1) map into 

the off-chip DRAM, and are accessed by the CPU 
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through the data cache. A cache hit for an address in 

the range P ...N −1 results in a single-cycle delay, 

whereas a cache miss, which leads to a block transfer 

between off-chip and cache memory, may result in a 

delay of say 10-20 processor cycles.  

Example 1. A small (4 × 4) matrix of coefficients, 

mask, slides over the input image, source, covering a 

different   4 × 4 region in each iteration of y, as shown 

in Figure 3. In each iteration, the coefficients of the 

mask are combined with the region of the image 

currently covered, to obtain a weighted average, and 

the result, cc, is assigned to the pixel of the output 

array, dest, in the center of the covered region. If the 

two arrays source and mask were to be accessed 

through the data cache, the performance would be 

affected by cache conflicts. This problem can be solved 

by storing the small mask array in the Scratch-pad 

memory.  

This assignment eliminates all conflicts in the data 

cache, the data cache is now used for memory accesses 

to source, which are very regular. Storing mask onchip, 

ensures that frequently accessed data is never ejected 

off-chip, thereby significantly improving the memory 

performance and energy dissipation.  

The memory assignment described in [16] exploits 

this architecture by first determining a Total Conflict 

Factor (TCF) for each array based on the access 

frequency and possibility of conflict with other arrays, 

and then considering the arrays for assignment to 

scratch pad memory in the order of TCF/(array size), 

giving priority to high-conflict/small-size arrays.  

 

iii) Dynamic Data Transfers  

In the above formulation, the data stored in the 

Scratch-Pad Memory. There is no automatic 

hardwarecontrolled mechanism to transfer data 

between the scratch pad and the main memory; such 

transfers have to be explicitly managed by the 

compiler. In the technique proposed in [8], the tiling 

compiler optimization is modified by first moving the 

data tiles into scratch pad memory and moving it back 

to main memory after the computation is complete. The 

idea of using a small buffer to store blocks of 

frequently used instructions was first introduced in [4]. 

Recent extensions of this strategy are the Decoded 

Instruction Buffer and the L-cache [7]. Researchers 

have also examined the possibility of storing both 

instructions and data in the scratch pad memory. In the 

formulation proposed in [4], the frequency of access of 

both data and program blocks are analyzed and the 

most frequently occurring among them are assigned to 

the scratch pad memory. 

III. EXISTANCE OF DRAM  

 DRAMs have been used in a processor-based 

environment for quite some time, but the context of its 

use in embedded systems – both from a hardware 

synthesis viewpoint, as well as from an embedded 

compiler viewpoint – have been investigated relatively 

recently.  

DRAMs offer better memory performance through 

the use of specialized access modes that exploit the 

internal structure and steering/buffering/banking of 

data within these memories. Explicit modeling of these 

specialized access modes allows the incorporation of 

such high-performance access modes into synthesis 

and compilation frameworks. New synthesis and 

compilation techniques have been developed that 

employ detailed knowledge of the DRAM access 

modes and exploit advance knowledge of an embedded 

system’s application to better improve system 

performance and power. 

 

# define N 128 

# define M 4 

# define NORM 16 

int source[N][N], 

dest [N][N]; 

int mask [M][M]; 

int acc, i, j, x, y; 

for (x = 0; x < N − M; x++) 

for (y = 0; y < N − M; y++) { 

acc = 0; 

for (i = 0; i < M; i++) 

for (j = 0; j < M; j++) 

acc= acc+source 

[x+i][y+j]*mask[i][j]; 

dest[x+M/2][y+M/2] = 

acc/NORM;} 

 

 
Fig.2. (a) Procedure CONV (b) Memory access 

pattern in CONV 

A typical DRAM memory address is internally split 

into a row address consisting of the most significant 

bits and a column address consisting of the least 

significant bits. The row address selects a page from 

the core storage and the column address selects an 

offset within the page to arrive at the desired word. 
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When an address is presented to the memory during a 

READ operation, the entire page addressed by the row 

address is read into the page buffer, in anticipation of 

spatial locality.  

If future accesses are to the same page, then there is 

no need to access the main storage area since it can just 

be read off the page buffer, which acts like a cache. 

Thus, subsequent accesses to the same page are very 

fast. A scheme for modeling the various memory 

access modes and using them to perform useful 

optimizations in the context of a Behavioral Synthesis 

environment is described in [13].  

The main observation is that the input behavior’s 

memory access patterns can potentially exploit the 

page mode (or other specialized access mode) features 

of the DRAM. The key idea is the representation of 

these specialized access modes as graph primitives that 

model individual DRAM access modes such as row 

decode, column decode, pre-charge, etc.; each DRAM 

family’s specialized access modes are then represented 

using a composition of these graph primitives to fit the 

desired access mode protocol. These composite graphs 

can then be scheduled together with the rest of the 

application behavior, both in the context of synthesis, 

as well as for code compilation. For instance, some 

additional DRAM-specific optimizations discussed in 

[13] are:  

i) Read-Modify-Write (R-M-W) Optimization that 

takes advantage of the R-M-W mode in modern 

DRAMs which provides support for a more efficient 

realization of the common case where a specific 

address is read, the data is involved in some 

computation, and then the output is written back to the 

same location. 

ii). Hoisting where the row-decode node is scheduled 

ahead of a conditional node if the first memory access 

in both branches are on the same page.  

iii). Unrolling optimization in the context of 

supporting the page mode accesses. A good overview 

of the performance implications of the architectural 

features of modern DRAMs is found in [13]. 

iv) Synchronous DRAM as DRAM architectures 

evolve, new challenges are presented to the automatic 

synthesis of embedded systems based on these 

memories. Synchronous DRAM represents an 

architectural advance that presents another 

optimization opportunity: multiple memory banks. The 

core memory storage is divided into multiple banks, 

each with its own independent page buffer; so that two 

separate memory pages can be simultaneously active in 

the multiple page buffers. The problem of modeling the 

access modes of synchronous DRAMs is addressed in 

[14]. The modes include: Burst mode read/write – fast 

successive accesses to data in the same page. 

Interleaved row read/write modes – alternating burst 

accesses between banks. Interleaved Column Access – 

alternating burst accesses between two chosen rows in 

different banks. Memory bank assignment is performed 

by creating an interference graph between arrays and 

partitioning it into subgraphs so that data in each part is 

assigned to a different memory bank. Many of today's 

embedded systems are based on system-on-chip 

platforms [16], which, in turn, consist of one or more 

embedded microcontrollers, digital signal processors 

(DSP), application specific circuits and read-only 

memory, all integrated into a single package. The bank 

assignment algorithm is related to techniques such as 

[15] that address memory assignment for DSP 

processors such as the Motorola 56000 which has a 

dual-bank internal memory/register file [16, 17]. The 

bank assignment problem in [15] is targeted at scalar 

variables, and is solved in conjunction with register 

allocation by building a constraint graph that models 

the data transfer possibilities between registers and 

memories followed by a simulated annealing step. [18] 

approached the SDRAM bank assignment problem by 

first constructing an array distance table. This table 

stores the distance in the DFG between each pair of 

arrays in the specification. A short distance indicates a 

strong correlation, possibly indicating that they might 

be, for instance, two inputs of the same operation, and 

hence, would benefit from being assigned to separate 

banks. The bank assignment is finally performed by 

considering array pairs in increasing order of their 

array distance information. Whereas the previous 

discussion has focused primarily in the context of 

hardware synthesis, similar ideas have been employed 

to aggressively exploit the memory access protocols for 

compilers [19, 20].  

In compiler/architecture code sign, the memory 

subsystem was separated from the micro architecture; 

the compiler typically dealt with memory operations 

using the abstractions of memory loads and stores, with 

the architecture (e.g., the memory controller) providing 

the interface to the (typically yet-unknown) family of 

DRAMs and other memory devices that would deliver 

the desired data. However, in an embedded system, the 

system architect has advance knowledge of the specific 

memories (e.g., DRAMs) used; thus we can employ 

memory-aware compilation techniques [19] that exploit 

the specific access modes in the DRAM protocol to 

perform better code scheduling. In a similar manner, it 

is possible for the code scheduler to employ global 

scheduling techniques to hide potential memory 

latencies using knowledge of the memory access 

protocols, and in effect, improve the ability of the 

memory controller to boost system performance [20]. 
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IV. SPECIAL PURPOSE MEMORIES 

In addition to the general memories such as caches, 

and memories specific to embedded systems, such as 

scratch-pad, there exist various other types of custom 

memories that implement specific access protocols. 

Such memories include: – LIFO (memory 

implementing Last-In-First-Out protocol). – FIFO 

(memory implementing queue or First-In-First-Out 

protocol). – CAM (content addressable memory).  

 

i) Customization of Memory Architectures  
We now survey some recent research efforts that 

address the exploration space involving on-chip 

memories. A number of distinct memory architectures 

could be devised to exploit different application 

specific memory access patterns efficiently. Even if we 

restrict the scope of the architecture to that involving 

on-chip memory only, the exploration space of 

different possible configurations is too large, making it 

infeasible to exhaustively simulate the performance 

and energy characteristics of the application for each 

configuration. Thus, exploration tools are necessary for 

rapidly evaluating the impact of several candidate 

architectures. Such tools can be of great utility to a 

system designer by giving fast initial feedback on a 

wide range of memory architectures [1].  

V. CACHES 

 Two of the most important aspects of data caches 

that can be customized for an application are: (1) the 

cache line size, (2) the cache size.  

The customization of cache line size for an 

application is performed in [21] using an estimation 

technique for predicting the memory access 

performance – that is, the total number of processor 

cycles required for all the memory accesses in the 

application. There is a tradeoff in sizing the cache line. 

If the memory accesses are very regular and 

consecutive, i.e., exhibit spatial locality, a longer cache 

line is desirable, since it minimizes the number of off-

chip accesses and exploits the locality by pre-fetching 

elements that will be needed in the immediate future. 

On the other hand, if the memory accesses are 

irregular, or have large strides, a shorter cache line is 

desirable, as this reduces off-chip memory traffic by 

not bringing unnecessary data into the cache. The 

maximum size of a cache line is the DRAM page size. 

The estimation technique uses data reuse analysis to 

predict the total number of cache hits and misses inside 

loop nests so that spatial locality is incorporated into 

the estimation. An estimate of the impact of conflict 

misses is also incorporated. The estimation is carried 

out for the different candidate line sizes and the best 

line size is selected for the cache. The customization of 

the total cache size is integrated into the scratch pad 

memory customization described in the next section.  

 

ii) Scratch-Pad Memory  
 

Mem Explore [21], an exploration framework for 

optimizing the on-chip data memory organization 

addresses the following problem: given a certain 

amount of on-chip memory space, partition this into 

data cache and scratch pad memory so that the total 

access time and energy dissipation is minimized, i.e., 

the number of accesses to off-chip memory is 

minimized. An on chip memory architecture is defined 

as a combination of the total size of on-chip memory 

used for data storage; the partitioning of this on-chip 

memory into: scratch memory, characterized by its 

size; and data cache, characterized by the cache size; 

and the cache line size. For each candidate on-chip 

memory size T, the technique considers different 

divisions of T into cache (size C) and scratch pad 

memory (size S = T − C), selecting only powers of 2 

for C. The procedure described in Section 2.2 is used to 

identify the right data for storage in scratch pad 

memory. Among the data assigned to be stored in off-

chip memory (and  

hence accessed through the cache), an estimation of the 

memory access performance is performed by 

combining an analysis of the array access patterns in 

the application and an approximate model of the cache 

behavior. The result of the estimation is the expected 

number of processor cycles required for all the memory 

accesses in the application. For each T, the (C, L) pair 

that is estimated to maximize performance is selected. 

Example 2. Typical exploration curves of the Mem 

Explore algorithm are shown in Figure 4. Figure 4(a) 

shows that the ideal division of a 2K on-chip space is 

1K scratch pad memory and 1K data cache. Figure 4(b) 

shows that very little performance improvement is 

observed beyond a total on-chip memory size of 2KB.  

The exploration curves of Figure 4 are generated 

from fast analytical estimates, which are three orders of  
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Magnitude faster than actual simulations, and are 

independent of data size. This estimation capability is 

important in the initial stages of system design, where  

the number of possible architectures is large, and a 

simulation of each architecture is prohibitively 

expensive.  
 

 

Fig. 3. Histogram Example (a) Variation of memory 

performance with different mixes of cache and 

Scratch-pad memory, for total on-chip memory of 2 

KB (b) Variation of memory performance with total 

on-chip memory space 

 

 

 

 

 

 

 

DRAM  

The presence of embedded DRAMs adds several 

new dimensions to traditional architecture exploration. 

One interesting aspect of DRAM architecture that can 

be customized for an application is the banking 

structure. Figure 5(a) illustrates a common problem 

with the single-bank DRAM architecture. If we have a 

loop that accesses in succession data from three large 

arrays A, B, and C, each of which is much larger than a 

page, then each memory access leads to a fresh page 

being read from the storage, effectively cancelling the 

benefits of the page buffer. This page buffer 

interference problem cannot be avoided if a fixed 

architecture DRAM is used. However, an elegant 

solution to the problem is available if the banking 

configuration of the DRAM can be customized for the 

application [22]. Thus, in the example of Figure 5, the 

arrays can be assigned to separate banks as shown in 

Figure 5(b). Since each bank has its own private page 

buffer, there is no interference between the arrays, and 

the memory accesses do not represent a bottleneck. In 

order to customize the banking structure for an 

application, we need to solve the memory bank 

assignment problem – determine an optimal banking 

structure and determine the assignment of each array 

variable into the banks such that the number of page 

misses is minimized. The memory bank customization 

problem is solved in [22] by modeling the assignment 

as a partitioning problem – partition a given set of 

nodes into a given number of groups such that a given 

criterion (bank misses in this case) is optimized. The 

partitioning proceeds by associating a cost of assigning 

two arrays into the same bank, determined by the 

number of accesses to the arrays and the loop count. If 

the arrays are accessed in the same loop, then the cost 

is high, thereby discouraging the partitioning algorithm 

from assigning them to the same bank. if two arrays are 

never accessed in the same loop, then they are 

candidates for assignment into the same bank.  

 

iv) Multiple SRAMs  
The number of memory modules used in a design 

has a significant impact on the access times and power 

consumption. In a custom memory architecture, the 

designer can choose number of memories, and the size, 

and number of ports on each memory. A single large 

monolithic memory to hold all the data is expensive in 

terms of both access time and energy dissipation than 

multiple memories of smaller size, all array data is 

stored in distinct memory modules, is also expensive, 

and the optimal allocation lies somewhere in between. 

The memory allocation problem is closely linked to the 

problem of assigning array data to the individual 

memory modules. Arrays need to be clustered into 

memories based on their accesses [23]. The clustering 

can be vertical (different arrays occupy different 

memory words) or horizontal (different arrays occupy 

different bit positions within the same word) [24]. 

Parameters such as bit-width, word count, and number 

of ports can be included in this analysis [25]. The 

required memory bandwidth (number of ports allowing 

simultaneous access) can be formally determined by 

first building a conflict graph of the array accesses and 

storing in the same memory module the arrays that do 

not conflict [26].  

 

v) Special Purpose Memories  
 

 

 

 

 

 

Fig. 4. (a) Arrays mapped to a single-bank memory (b) 

3-bank memory architecture 
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Special purpose memories such as stacks (LIFO), 

queues (FIFO), frame buffers, streaming buffers, etc. 

can be utilized when customizing the memory 

architecture for an application. Indeed, analysis of 

many large applications shows that a significant 

number of the memory references in data-intensive 

applications are made by a surprisingly small number 

of lines of code. Thus it is possible to customize the 

memory subsystem by tuning the memories for these 

segments of code, with the goal of improving 

performance, and also for reducing the power 

dissipation. In the approach described in [27], the 

application is first analyzed and different access 

patterns identified. Data for the most critical access 

patterns are assigned to memory modules that best fit 

the access pattern profiles. The system designer can 

then evaluate different cost/performance/power profiles 

for different realizations of the memory subsystem.  

 

vi) Processor-Memory Co-exploration 
 Data path Width and Memory Size The CPU’s bit-

width is an additional parameter that can be tuned 

during architectural exploration of customizable 

processors. [28] studied the relationship between the 

width of the processor data path and the memory 

subsystem. This relationship is important when 

different data types with different sizes are used in the 

application. The key observation made is that as data 

path width is decreased, the data memory size 

decreases because of less wasted space. For example, 

storing 3-bit data in a 4-bit word instead of 8-bit word), 

but the instruction memory might increase. For 

example, storing 7-bit data in an 8-bit word requires 

only one instruction to access it, but requires two 

instructions if a 4-bit data path is used. The authors use 

a RAM and ROM cost model to evaluate the cost of 

candidate bit-widths in a combined CPU-memory 

exploration. Architectural Description Language 

(ADL) Driven Co-Exploration Processor Architecture 

Description Languages (ADLs) have been developed to 

allow for a language-driven exploration and software 

toolkit generation approach [29, 30]. Currently most 

ADLs assume an implicit/default memory 

organization, or are limited to specifying the 

characteristics of a traditional memory hierarchy. Since 

embedded systems may contain non-traditional 

memory organizations, there is a great need to model 

explicitly the memory subsystem for an ADL driven 

exploration approach. A recent approach [31] describes 

the use of the EXPRESSION ADL [32] to drive 

Memory Architecture Exploration. Each such explicit 

memory architecture description is then used to 

automatically generate the information needed by the 

compiler [19, 20] to efficiently utilize the features in 

the memory architecture, and to generate a memory 

simulator, allowing feedback to the designer on the 

match between the application, the compiler and the 

memory architecture.  

 

vii)  Split Spatial and Temporal Caches  
Various specialized memory structures proposed 

over the years could be candidates for embedded 

systems. One such concept is split spatial/temporal 

caches. Variables in real life applications present a 

wide variety of access patterns and locality types (for 

instance scalars, such as indexes, present usually high 

temporal and moderate spatial locality, while vectors 

with small stride present high spatial locality, and 

vectors with large stride present low spatial locality. 

Several approaches including [33] have proposed 

splitting a cache into a spatial cache and a temporal 

cache that store data structures with high temporal and 

high spatial locality respectively. These approaches 

rely on a dynamic prediction mechanism to route the 

data to either the spatial or the temporal caches, based 

on a history buffer. In an embedded system context, the 

approach of [34] uses a similar split-cache architecture, 

but allocates the variables statically to the different 

local memory modules, avoiding the power and area 

overhead of the dynamic prediction mechanism. Thus 

by targeting the specific locality types of the different 

variables, better utilization of the main memory 

bandwidth is achieved. For instance, if a variable with 

low spatial locality is serviced by a cache with a large 

line size, a large number of the values read from the 

main memory will never be used. The approach in [34] 

shows that the memory bandwidth and memory power 

consumption can be reduced significantly.  

 

VI. CONCLUSION 
The Advance knowledge of the applications being 

implemented by the system; many design parameters 

can be customized. This is especially true of the 

memory subsystem where a vast array of different 

organizations can be employed for application specific 

systems and the designer is not restricted to the 

traditional cache hierarchy. The optimal memory 

architecture for an application specific system can be 

significantly different from the typical cache hierarchy 

of processors. We outlined different memory 

architectures relevant to embedded systems and 

strategies to customize them for a given application. 

While some of the analytical techniques are automated, 

a lot of work still remains to be performed in the 

coming years before a completely push-button 

methodology evolves for application-specific 

customization of the memory organization in 

embedded systems. 
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