
National Conference on Emerging Trends in Information, Digital & Embedded Systems(NC’e-TIDES-2016)

 International Journal of Advanced Trends in Engineering, Science and Technology(IJATEST)Volume.4,Special Issue.1Dec.2016

www.ijatest.org
 92

Exploration of System on Chip Memory Architectures

for Embedded Systems

Mr. M. Devendra M.S.,
1

Research Scholar, ECE, Rayalaseema University

Kurnool, AP, INDIA

E-mail: devendragprecece@gmail.com

Dr. K.E. Sreenivasa Murthy PhD.,
2

Professor & HOD of ECE Department

G. Pullaiah College of Engineering and

Technology, Kurnool, AP, INDIA

E-mail: kesmurthy@rediffmail.com

Abstract -- Embedded systems are typically designed for one or a few target applications, allowing for customization of the

system architecture for the desired system goals such as performance, power and cost. The memory subsystem will continue to

present significant bottlenecks in the design of future embedded systems-on-chip. Using advance knowledge of the

application’s instruction and data behavior, it is possible to customize the memory architecture to meet varying system goals.

On one hand, different applications exhibit varying memory behavior. On the other hand, a large variety of memory modules

allow design implementations with a wide range of cost, performance and power profiles. The embedded system architect can

thus explore and select custom memory architectures to fit the constraints of target applications and design goals. In this

paper we present an overview of recent research in the area of memory architecture customization for embedded systems.

Keywords: UHD, MCU, EMI, ADL, RAM.

I. INTRODUCTION

system-on-chip includes the modem, radio

transceiver, power management functionality, a

multimedia engine and security features, all on the

same chip. The mobile space has led to a huge

requirement in the throughput enhancement of the

memory subsystem; the mobile world moving towards

64-bit architectures, UHD video streaming, secure

video playback, IOT connecting all the electronic

gadgets etc further strengthens the need of a very

efficient memory subsystem. The exploration space of

different possible memory architectures is vast, and

there have been attempts to automate or semi-automate

this exploration process . The memory architecture of

an embedded processor core is complex and is custom

de-signed to improve run-time performance and power

consumption.DSP applications are more data

dominated than the control-dominated software
executed on an MCU.

The memory subsystem is an important and

interesting component of system designs that can

benefit from customization. The memory can be

selectively cached; the cache line size can be

determined by the application; the designer can opt to

discard the cache completely and choose specialized

memory configurations such as FIFOs and stream

buffers. The application-specific nature of embedded

systems has caused a fresh look at architectural issues

in recent times. Embedded systems implement a fixed

application or set of related applications; consequently,

the system architecture can be customized to suit the

needs of the given application. This results in an

architectural optimization strategy that is

fundamentally different from that employed for general
purpose processors. In

the case of general purpose computer systems, the

actual use to which the system will be put is not

known, so the processors are designed for good

average performance over a set of typical benchmark

programs which cover a wide range of application with

different behaviors. In embedded systems, the features

of the given application can be used to determine the

architectural parameters. This becomes very important

in modern embedded systems where power

consumption is a crucial factor. For example, if an

application does not use floating point arithmetic, then

the floating point unit can be removed from the

processor, thereby saving area and power in the

implementation.

 Memory issues have been separately addressed by

disparate research groups: computer architects,

compiler writers, and the embedded systems

community. Memory architectures have been studied

extensively by computer architects. Memory hierarchy,

implemented with cache structures, has received

considerable attention from researchers. Cache

parameters such as line size, associatively, and write

National Conference on Emerging Trends in Information, Digital & Embedded Systems(NC’e-TIDES-2016)

 International Journal of Advanced Trends in Engineering, Science and Technology(IJATEST)Volume.4,Special Issue.1Dec.2016

www.ijatest.org
 93

policy, and their impact on typical applications have
been studied in detail .

Recent studies have also quantified the impact of

dynamic memory (DRAM) architectures. Since

architectures are closely associated with compilation

issues, compiler researchers have addressed the

problem of generating efficient code for a given

memory architecture by appropriately transforming the

program and data. Compiler transformations such as

blocking/tiling are examples of such optimizations .

Finally, researchers in the area of embedded systems

have typically employed memory structures such as

register files, static memory (SRAMs), and DRAMs in

generating application specific designs. Those

optimizations need to be integrated into the embedded

system design process as well as enhanced with new

optimization and estimation techniques. We first

present an overview of different memory architectures

used in embedded systems, and then survey some of

the ways in which these architectures have been

customized.

II. EMBEDDED MEMORY ARCHITECTURES

i) Caches

As application-specific systems use a processor core

as a building block, the natural extension in terms of

memory architecture was the addition of instruction

and data caches. Since the organization of typical

caches is well known [1] we will omit the explanation.

Caches have many parameters which can be

customized for a given application. Some of these

customizations are described in Section 3.

ii) Scratch-Pad Memory

 A scratch-pad memory storing a small amount of

frequently accessed data on-chip has an equivalent in

the instruction cache.An embedded system designer is

not restricted to using only a traditional cached

memory architecture. Since the design needs to execute

only a single application, we can use unconventional

architectural variations that suit the specific application

under consideration.

 One such design alternative is Scratch Pad memory

[6]. Scratch-Pad memory refers to data memory

residing on-chip, that is mapped into an address space

disjoint from the off-chip memory, but connected to the

same address and data buses. Both the cache and

Scratch-Pad memory (usually SRAM) allow fast access

to their residing data, whereas an access to the off-chip

memory requires relatively longer access times. The

main difference between the Scratch-Pad SRAM and

data cache is that the SRAM guarantees a singlecycle

access time, whereas an access to the cache is subject

to cache misses. The concept of Scratch Pad memory is

an important architectural consideration in modern

embedded systems, where advances in embedded

DRAM technology have made it possible to combine

DRAM and logic on the same chip.

Fig. 1. Block Diagram of Typical Embedded Processor

with Scratch-Pad Memory

Since data stored in embedded DRAM can be accessed

much faster and in a more powerefficient manner than

that in off-chip DRAM, a related optimization problem

that arises in this context is how to identify critical data

in an application, for storage in on-chip memory.

Figure 1 shows the architectural block diagram of an

application employing a typical embedded core

processor 1, where the parts enclosed in the dotted

rectangle are implemented in one chip[2], interfacing

with an off-chip memory, usually realized with

DRAM. The address and data buses from the CPU core

connect to the Data Cache, Scratch-Pad memory, and

the External Memory Interface (EMI) blocks. On a

memory access request from the CPU, the data cache

indicates a cache hit to the EMI block through the C

HIT signal. Similarly, if the SRAM interface circuitry

in the Scratch-Pad memory determines that the

referenced memory address maps into the on-chip

SRAM, it assumes control of the data bus and indicates

this status to the EMI through signal S HIT. If both the

cache and SRAM report misses, the EMI transfers a

block of data of the appropriate size (equal to the cache

line size) between the cache and the DRAM.

 One possible data address space mapping for this

memory configuration is shown in Figure 2, for a

sample addressable memory of size N data words.

Memory addresses 0 ...(P − 1) map into the on-chip

scratch pad memory, and have a single processor cycle

access time. Memory addresses P ...(N − 1) map into

the off-chip DRAM, and are accessed by the CPU

National Conference on Emerging Trends in Information, Digital & Embedded Systems(NC’e-TIDES-2016)

 International Journal of Advanced Trends in Engineering, Science and Technology(IJATEST)Volume.4,Special Issue.1Dec.2016

www.ijatest.org
 94

through the data cache. A cache hit for an address in

the range P ...N −1 results in a single-cycle delay,

whereas a cache miss, which leads to a block transfer

between off-chip and cache memory, may result in a

delay of say 10-20 processor cycles.

Example 1. A small (4 × 4) matrix of coefficients,

mask, slides over the input image, source, covering a

different 4 × 4 region in each iteration of y, as shown

in Figure 3. In each iteration, the coefficients of the

mask are combined with the region of the image

currently covered, to obtain a weighted average, and

the result, cc, is assigned to the pixel of the output

array, dest, in the center of the covered region. If the

two arrays source and mask were to be accessed

through the data cache, the performance would be

affected by cache conflicts. This problem can be solved

by storing the small mask array in the Scratch-pad

memory.

This assignment eliminates all conflicts in the data

cache, the data cache is now used for memory accesses

to source, which are very regular. Storing mask onchip,

ensures that frequently accessed data is never ejected

off-chip, thereby significantly improving the memory

performance and energy dissipation.

The memory assignment described in [16] exploits

this architecture by first determining a Total Conflict

Factor (TCF) for each array based on the access

frequency and possibility of conflict with other arrays,

and then considering the arrays for assignment to

scratch pad memory in the order of TCF/(array size),

giving priority to high-conflict/small-size arrays.

iii) Dynamic Data Transfers

In the above formulation, the data stored in the

Scratch-Pad Memory. There is no automatic

hardwarecontrolled mechanism to transfer data

between the scratch pad and the main memory; such

transfers have to be explicitly managed by the

compiler. In the technique proposed in [8], the tiling

compiler optimization is modified by first moving the

data tiles into scratch pad memory and moving it back

to main memory after the computation is complete. The

idea of using a small buffer to store blocks of

frequently used instructions was first introduced in [4].

Recent extensions of this strategy are the Decoded

Instruction Buffer and the L-cache [7]. Researchers

have also examined the possibility of storing both

instructions and data in the scratch pad memory. In the

formulation proposed in [4], the frequency of access of

both data and program blocks are analyzed and the

most frequently occurring among them are assigned to

the scratch pad memory.

III. EXISTANCE OF DRAM

 DRAMs have been used in a processor-based

environment for quite some time, but the context of its

use in embedded systems – both from a hardware

synthesis viewpoint, as well as from an embedded

compiler viewpoint – have been investigated relatively

recently.

DRAMs offer better memory performance through

the use of specialized access modes that exploit the

internal structure and steering/buffering/banking of

data within these memories. Explicit modeling of these

specialized access modes allows the incorporation of

such high-performance access modes into synthesis

and compilation frameworks. New synthesis and

compilation techniques have been developed that

employ detailed knowledge of the DRAM access

modes and exploit advance knowledge of an embedded

system’s application to better improve system

performance and power.

define N 128

define M 4

define NORM 16

int source[N][N],

dest [N][N];

int mask [M][M];

int acc, i, j, x, y;

for (x = 0; x < N − M; x++)

for (y = 0; y < N − M; y++) {

acc = 0;

for (i = 0; i < M; i++)

for (j = 0; j < M; j++)

acc= acc+source

[x+i][y+j]*mask[i][j];

dest[x+M/2][y+M/2] =

acc/NORM;}

Fig.2. (a) Procedure CONV (b) Memory access

pattern in CONV

A typical DRAM memory address is internally split

into a row address consisting of the most significant

bits and a column address consisting of the least

significant bits. The row address selects a page from

the core storage and the column address selects an

offset within the page to arrive at the desired word.

National Conference on Emerging Trends in Information, Digital & Embedded Systems(NC’e-TIDES-2016)

 International Journal of Advanced Trends in Engineering, Science and Technology(IJATEST)Volume.4,Special Issue.1Dec.2016

www.ijatest.org
 95

When an address is presented to the memory during a

READ operation, the entire page addressed by the row

address is read into the page buffer, in anticipation of

spatial locality.

If future accesses are to the same page, then there is

no need to access the main storage area since it can just

be read off the page buffer, which acts like a cache.

Thus, subsequent accesses to the same page are very

fast. A scheme for modeling the various memory

access modes and using them to perform useful

optimizations in the context of a Behavioral Synthesis

environment is described in [13].

The main observation is that the input behavior’s

memory access patterns can potentially exploit the

page mode (or other specialized access mode) features

of the DRAM. The key idea is the representation of

these specialized access modes as graph primitives that

model individual DRAM access modes such as row

decode, column decode, pre-charge, etc.; each DRAM

family’s specialized access modes are then represented

using a composition of these graph primitives to fit the

desired access mode protocol. These composite graphs

can then be scheduled together with the rest of the

application behavior, both in the context of synthesis,

as well as for code compilation. For instance, some

additional DRAM-specific optimizations discussed in

[13] are:

i) Read-Modify-Write (R-M-W) Optimization that

takes advantage of the R-M-W mode in modern

DRAMs which provides support for a more efficient

realization of the common case where a specific

address is read, the data is involved in some

computation, and then the output is written back to the

same location.

ii). Hoisting where the row-decode node is scheduled

ahead of a conditional node if the first memory access

in both branches are on the same page.

iii). Unrolling optimization in the context of

supporting the page mode accesses. A good overview

of the performance implications of the architectural

features of modern DRAMs is found in [13].

iv) Synchronous DRAM as DRAM architectures

evolve, new challenges are presented to the automatic

synthesis of embedded systems based on these

memories. Synchronous DRAM represents an

architectural advance that presents another

optimization opportunity: multiple memory banks. The

core memory storage is divided into multiple banks,

each with its own independent page buffer; so that two

separate memory pages can be simultaneously active in

the multiple page buffers. The problem of modeling the

access modes of synchronous DRAMs is addressed in

[14]. The modes include: Burst mode read/write – fast

successive accesses to data in the same page.

Interleaved row read/write modes – alternating burst

accesses between banks. Interleaved Column Access –

alternating burst accesses between two chosen rows in

different banks. Memory bank assignment is performed

by creating an interference graph between arrays and

partitioning it into subgraphs so that data in each part is

assigned to a different memory bank. Many of today's

embedded systems are based on system-on-chip

platforms [16], which, in turn, consist of one or more

embedded microcontrollers, digital signal processors

(DSP), application specific circuits and read-only

memory, all integrated into a single package. The bank

assignment algorithm is related to techniques such as

[15] that address memory assignment for DSP

processors such as the Motorola 56000 which has a

dual-bank internal memory/register file [16, 17]. The

bank assignment problem in [15] is targeted at scalar

variables, and is solved in conjunction with register

allocation by building a constraint graph that models

the data transfer possibilities between registers and

memories followed by a simulated annealing step. [18]

approached the SDRAM bank assignment problem by

first constructing an array distance table. This table

stores the distance in the DFG between each pair of

arrays in the specification. A short distance indicates a

strong correlation, possibly indicating that they might

be, for instance, two inputs of the same operation, and

hence, would benefit from being assigned to separate

banks. The bank assignment is finally performed by

considering array pairs in increasing order of their

array distance information. Whereas the previous

discussion has focused primarily in the context of

hardware synthesis, similar ideas have been employed

to aggressively exploit the memory access protocols for

compilers [19, 20].

In compiler/architecture code sign, the memory

subsystem was separated from the micro architecture;

the compiler typically dealt with memory operations

using the abstractions of memory loads and stores, with

the architecture (e.g., the memory controller) providing

the interface to the (typically yet-unknown) family of

DRAMs and other memory devices that would deliver

the desired data. However, in an embedded system, the

system architect has advance knowledge of the specific

memories (e.g., DRAMs) used; thus we can employ

memory-aware compilation techniques [19] that exploit

the specific access modes in the DRAM protocol to

perform better code scheduling. In a similar manner, it

is possible for the code scheduler to employ global

scheduling techniques to hide potential memory

latencies using knowledge of the memory access

protocols, and in effect, improve the ability of the

memory controller to boost system performance [20].

National Conference on Emerging Trends in Information, Digital & Embedded Systems(NC’e-TIDES-2016)

 International Journal of Advanced Trends in Engineering, Science and Technology(IJATEST)Volume.4,Special Issue.1Dec.2016

www.ijatest.org
 96

IV. SPECIAL PURPOSE MEMORIES

In addition to the general memories such as caches,

and memories specific to embedded systems, such as

scratch-pad, there exist various other types of custom

memories that implement specific access protocols.

Such memories include: – LIFO (memory

implementing Last-In-First-Out protocol). – FIFO

(memory implementing queue or First-In-First-Out

protocol). – CAM (content addressable memory).

i) Customization of Memory Architectures
We now survey some recent research efforts that

address the exploration space involving on-chip

memories. A number of distinct memory architectures

could be devised to exploit different application

specific memory access patterns efficiently. Even if we

restrict the scope of the architecture to that involving

on-chip memory only, the exploration space of

different possible configurations is too large, making it

infeasible to exhaustively simulate the performance

and energy characteristics of the application for each

configuration. Thus, exploration tools are necessary for

rapidly evaluating the impact of several candidate

architectures. Such tools can be of great utility to a

system designer by giving fast initial feedback on a

wide range of memory architectures [1].

V. CACHES

 Two of the most important aspects of data caches

that can be customized for an application are: (1) the

cache line size, (2) the cache size.

The customization of cache line size for an

application is performed in [21] using an estimation

technique for predicting the memory access

performance – that is, the total number of processor

cycles required for all the memory accesses in the

application. There is a tradeoff in sizing the cache line.

If the memory accesses are very regular and

consecutive, i.e., exhibit spatial locality, a longer cache

line is desirable, since it minimizes the number of off-

chip accesses and exploits the locality by pre-fetching

elements that will be needed in the immediate future.

On the other hand, if the memory accesses are

irregular, or have large strides, a shorter cache line is

desirable, as this reduces off-chip memory traffic by

not bringing unnecessary data into the cache. The

maximum size of a cache line is the DRAM page size.

The estimation technique uses data reuse analysis to

predict the total number of cache hits and misses inside

loop nests so that spatial locality is incorporated into

the estimation. An estimate of the impact of conflict

misses is also incorporated. The estimation is carried

out for the different candidate line sizes and the best

line size is selected for the cache. The customization of

the total cache size is integrated into the scratch pad

memory customization described in the next section.

ii) Scratch-Pad Memory

Mem Explore [21], an exploration framework for

optimizing the on-chip data memory organization

addresses the following problem: given a certain

amount of on-chip memory space, partition this into

data cache and scratch pad memory so that the total

access time and energy dissipation is minimized, i.e.,

the number of accesses to off-chip memory is

minimized. An on chip memory architecture is defined

as a combination of the total size of on-chip memory

used for data storage; the partitioning of this on-chip

memory into: scratch memory, characterized by its

size; and data cache, characterized by the cache size;

and the cache line size. For each candidate on-chip

memory size T, the technique considers different

divisions of T into cache (size C) and scratch pad

memory (size S = T − C), selecting only powers of 2

for C. The procedure described in Section 2.2 is used to

identify the right data for storage in scratch pad

memory. Among the data assigned to be stored in off-

chip memory (and

hence accessed through the cache), an estimation of the

memory access performance is performed by

combining an analysis of the array access patterns in

the application and an approximate model of the cache

behavior. The result of the estimation is the expected

number of processor cycles required for all the memory

accesses in the application. For each T, the (C, L) pair

that is estimated to maximize performance is selected.

Example 2. Typical exploration curves of the Mem

Explore algorithm are shown in Figure 4. Figure 4(a)

shows that the ideal division of a 2K on-chip space is

1K scratch pad memory and 1K data cache. Figure 4(b)

shows that very little performance improvement is

observed beyond a total on-chip memory size of 2KB.

The exploration curves of Figure 4 are generated

from fast analytical estimates, which are three orders of

National Conference on Emerging Trends in Information, Digital & Embedded Systems(NC’e-TIDES-2016)

 International Journal of Advanced Trends in Engineering, Science and Technology(IJATEST)Volume.4,Special Issue.1Dec.2016

www.ijatest.org
 97

Magnitude faster than actual simulations, and are

independent of data size. This estimation capability is

important in the initial stages of system design, where

the number of possible architectures is large, and a

simulation of each architecture is prohibitively

expensive.

Fig. 3. Histogram Example (a) Variation of memory

performance with different mixes of cache and

Scratch-pad memory, for total on-chip memory of 2

KB (b) Variation of memory performance with total

on-chip memory space

DRAM

The presence of embedded DRAMs adds several

new dimensions to traditional architecture exploration.

One interesting aspect of DRAM architecture that can

be customized for an application is the banking

structure. Figure 5(a) illustrates a common problem

with the single-bank DRAM architecture. If we have a

loop that accesses in succession data from three large

arrays A, B, and C, each of which is much larger than a

page, then each memory access leads to a fresh page

being read from the storage, effectively cancelling the

benefits of the page buffer. This page buffer

interference problem cannot be avoided if a fixed

architecture DRAM is used. However, an elegant

solution to the problem is available if the banking

configuration of the DRAM can be customized for the

application [22]. Thus, in the example of Figure 5, the

arrays can be assigned to separate banks as shown in

Figure 5(b). Since each bank has its own private page

buffer, there is no interference between the arrays, and

the memory accesses do not represent a bottleneck. In

order to customize the banking structure for an

application, we need to solve the memory bank

assignment problem – determine an optimal banking

structure and determine the assignment of each array

variable into the banks such that the number of page

misses is minimized. The memory bank customization

problem is solved in [22] by modeling the assignment

as a partitioning problem – partition a given set of

nodes into a given number of groups such that a given

criterion (bank misses in this case) is optimized. The

partitioning proceeds by associating a cost of assigning

two arrays into the same bank, determined by the

number of accesses to the arrays and the loop count. If

the arrays are accessed in the same loop, then the cost

is high, thereby discouraging the partitioning algorithm

from assigning them to the same bank. if two arrays are

never accessed in the same loop, then they are

candidates for assignment into the same bank.

iv) Multiple SRAMs
The number of memory modules used in a design

has a significant impact on the access times and power

consumption. In a custom memory architecture, the

designer can choose number of memories, and the size,

and number of ports on each memory. A single large

monolithic memory to hold all the data is expensive in

terms of both access time and energy dissipation than

multiple memories of smaller size, all array data is

stored in distinct memory modules, is also expensive,

and the optimal allocation lies somewhere in between.

The memory allocation problem is closely linked to the

problem of assigning array data to the individual

memory modules. Arrays need to be clustered into

memories based on their accesses [23]. The clustering

can be vertical (different arrays occupy different

memory words) or horizontal (different arrays occupy

different bit positions within the same word) [24].

Parameters such as bit-width, word count, and number

of ports can be included in this analysis [25]. The

required memory bandwidth (number of ports allowing

simultaneous access) can be formally determined by

first building a conflict graph of the array accesses and

storing in the same memory module the arrays that do

not conflict [26].

v) Special Purpose Memories

Fig. 4. (a) Arrays mapped to a single-bank memory (b)

3-bank memory architecture

National Conference on Emerging Trends in Information, Digital & Embedded Systems(NC’e-TIDES-2016)

 International Journal of Advanced Trends in Engineering, Science and Technology(IJATEST)Volume.4,Special Issue.1Dec.2016

www.ijatest.org
 98

Special purpose memories such as stacks (LIFO),

queues (FIFO), frame buffers, streaming buffers, etc.

can be utilized when customizing the memory

architecture for an application. Indeed, analysis of

many large applications shows that a significant

number of the memory references in data-intensive

applications are made by a surprisingly small number

of lines of code. Thus it is possible to customize the

memory subsystem by tuning the memories for these

segments of code, with the goal of improving

performance, and also for reducing the power

dissipation. In the approach described in [27], the

application is first analyzed and different access

patterns identified. Data for the most critical access

patterns are assigned to memory modules that best fit

the access pattern profiles. The system designer can

then evaluate different cost/performance/power profiles

for different realizations of the memory subsystem.

vi) Processor-Memory Co-exploration
 Data path Width and Memory Size The CPU’s bit-

width is an additional parameter that can be tuned

during architectural exploration of customizable

processors. [28] studied the relationship between the

width of the processor data path and the memory

subsystem. This relationship is important when

different data types with different sizes are used in the

application. The key observation made is that as data

path width is decreased, the data memory size

decreases because of less wasted space. For example,

storing 3-bit data in a 4-bit word instead of 8-bit word),

but the instruction memory might increase. For

example, storing 7-bit data in an 8-bit word requires

only one instruction to access it, but requires two

instructions if a 4-bit data path is used. The authors use

a RAM and ROM cost model to evaluate the cost of

candidate bit-widths in a combined CPU-memory

exploration. Architectural Description Language

(ADL) Driven Co-Exploration Processor Architecture

Description Languages (ADLs) have been developed to

allow for a language-driven exploration and software

toolkit generation approach [29, 30]. Currently most

ADLs assume an implicit/default memory

organization, or are limited to specifying the

characteristics of a traditional memory hierarchy. Since

embedded systems may contain non-traditional

memory organizations, there is a great need to model

explicitly the memory subsystem for an ADL driven

exploration approach. A recent approach [31] describes

the use of the EXPRESSION ADL [32] to drive

Memory Architecture Exploration. Each such explicit

memory architecture description is then used to

automatically generate the information needed by the

compiler [19, 20] to efficiently utilize the features in

the memory architecture, and to generate a memory

simulator, allowing feedback to the designer on the

match between the application, the compiler and the

memory architecture.

vii) Split Spatial and Temporal Caches
Various specialized memory structures proposed

over the years could be candidates for embedded

systems. One such concept is split spatial/temporal

caches. Variables in real life applications present a

wide variety of access patterns and locality types (for

instance scalars, such as indexes, present usually high

temporal and moderate spatial locality, while vectors

with small stride present high spatial locality, and

vectors with large stride present low spatial locality.

Several approaches including [33] have proposed

splitting a cache into a spatial cache and a temporal

cache that store data structures with high temporal and

high spatial locality respectively. These approaches

rely on a dynamic prediction mechanism to route the

data to either the spatial or the temporal caches, based

on a history buffer. In an embedded system context, the

approach of [34] uses a similar split-cache architecture,

but allocates the variables statically to the different

local memory modules, avoiding the power and area

overhead of the dynamic prediction mechanism. Thus

by targeting the specific locality types of the different

variables, better utilization of the main memory

bandwidth is achieved. For instance, if a variable with

low spatial locality is serviced by a cache with a large

line size, a large number of the values read from the

main memory will never be used. The approach in [34]

shows that the memory bandwidth and memory power

consumption can be reduced significantly.

VI. CONCLUSION
The Advance knowledge of the applications being

implemented by the system; many design parameters

can be customized. This is especially true of the

memory subsystem where a vast array of different

organizations can be employed for application specific

systems and the designer is not restricted to the

traditional cache hierarchy. The optimal memory

architecture for an application specific system can be

significantly different from the typical cache hierarchy

of processors. We outlined different memory

architectures relevant to embedded systems and

strategies to customize them for a given application.

While some of the analytical techniques are automated,

a lot of work still remains to be performed in the

coming years before a completely push-button

methodology evolves for application-specific

customization of the memory organization in

embedded systems.

National Conference on Emerging Trends in Information, Digital & Embedded Systems(NC’e-TIDES-2016)

 International Journal of Advanced Trends in Engineering, Science and Technology(IJATEST)Volume.4,Special Issue.1Dec.2016

www.ijatest.org
 99

REFERENCES

[1] Prasenjit Chakraborty, Preeti Ranjan Panda, Sandeep

Sen, Partitioning and Data Mapping in Reconfigurable Cache and

Scratch Pad Memory based Architectures, ACM Transactions on

Design Automation of Electronic Systems (TODAES), Accepted

for Publication, 2016.

[2] Iason Filippopoulos, Namita Sharma, Per Gunnar Kjeldsberg,

Francky Catthoor, Preeti Ranjan Panda, Integrated Exploration

Methodology for Data Interleaving and Data-to-Memory Mapping

on SIMD Architectures , ACM Transactions on Embedded

Computing Systems (TECS), To appear, 2016

[3] Sandeep Chandran, Smruti R. Sarangi, Preeti Ranjan

Panda, Area-Aware Cache Update Trackers for Postsilicon

Validation , IEEE Transactions on VLSI Systems(TVLSI), 24(5),

2016

[4] Namita Sharma, Preeti Ranjan Panda, Francky Catthoor,

Praveen Raghavan, Tom Vander Aa, Array Interleaving - An

Energy-Efficient Data Layout Transformation , ACM Transactions

on Design Automation of Electronic Systems (TODAES), 20(3),

2015.

[5] Neeraj Goel, Anshul Kumar, Preeti Ranjan Panda, Shared-port

register file architecture for low-energy VLIW processors , ACM

Transactions on Architecture and Code Optimization (TACO)

11(1): 1 (2014)

[6] Exploiting UML based validation for compliance checking of

TLM 2 based models, Vaibhav Jain, Anshul Kumar, Preeti Ranjan

Panda, Design Autom. for Emb. Sys. (DAES) 16(2): 93-113 (2012)

[7] Compressing Cache State for Post-Silicon Processor Debug,

Preeti Ranjan Panda, M. Balakrishnan, and Anant Vishnoi, IEEE

Transactions on Computers (TC), 60(4): 484-497, 2011

[8] Evaluation of Bus Based Interconnect Mechanisms in Clustered

VLIW Architectures, Anup Gangwar, M. Balakrishnan, Preeti

Ranjan Panda, and Anshul Kumar , International Journal of Parallel

Programming (IJPP), Vol. 35, No. 6, pp507-527, 2007

[9] Memory Allocation and Mapping in High-level Synthesis: An

Integrated Approach, Jaewon Seo, Taewhan Kim, and Preeti

Ranjan Panda , IEEE Transactions on VLSI Systems (TVLSI), Vol.

11, No. 5, October 2003

[10] Data Memory Organization and Optimizations in Application-

Specific Systems, P. R. Panda, N. D. Dutt, A. Nicolau, F. Catthoor,

A. Vandecappelle, E. Brockmeyer, C. Kulkarni, and E. de Greef ,

IEEE Design and Test of Computers (D & T), Vol. 18, No. 3,

May/June 2001.

[11] Panda, P. R., Dutt, N. D., Nicolau, A.: Memory Issues in

Embedded Systems-OnChip: Optimizations and Exploration.

Kluwer Academic Publishers, Norwell, MA (1999) 648, 649, 655

 [12] Hennessy, J. L., Patterson, D. A.: Computer Architecture – A

Quantitative Approach. Morgan Kaufman, San Francisco, CA

(1994) 648, 649

[13] Panda, P. R., Dutt, N. D., Nicolau, A.: Incorporating DRAM

access modes into high-level synthesis. IEEE Transactions on

Computer Aided Design 17 (1998) 96–109 653

 [14] Khare, A., Panda, P. R., Dutt, N. D., Nicolau, A.: High-level

synthesis with SDRAMs and RAMBUS DRAMs. IEICE

Transactions on fundamentals of electronics, communications and

computer sciences E82-A (1999) 2347–2355 653

[15] Sudarsanam, A., Malik, S.: Simultaneous reference allocation

in code generation for dual data memory bank asips. ACM

Transactions on Design Automation of Electronic Systems 5 (2000)

242–264 653, 654

[16] Saghir, M. A. R., Chow, P., Lee, C. G.: Exploiting dual data-

memory banks in digital signal processors. In: International

conference on Architectural Support for Programming Languages

and Operating Systems, Cambridge, MA (1996) 234– 243 654

[17] Cruz, J. L., Gonzalez, A., Valero, M., Topham, N.: Multiple-

banked register file architectures. In: International Symposium on

Computer Architecture, Vancouver, Canada (2000) 315–325 654

[18] Chang, H. K., Lin, Y. L.: Array allocation taking into account

SDRAM characteristics. In: Asia and South Pacific Design

Automation Conference, Yokohama (2000) 497–502 654

[19] Grun, P., Dutt, N., Nicolau, A.: Memory aware compilation

through accurate timing extraction. In: Design Automation

Conference, Los Angeles, CA (2000) 316–321 654, 659

[20] Grun, P., Dutt, N., Nicolau, A.: MIST: An algorithm for

memory miss traffic management. In: IEEE/ACM International

Conference on Computer Aided Design, San Jose, CA (2000) 431–

437 654, 659

[21] Panda, P. R., Dutt, N. D., Nicolau, A.: Local memory

exploration and optimization in embedded systems. IEEE

Transactions on Computer Aided Design 18 (1999) 3–13 655

[22] Panda, P. R.: Memory bank customization and assignment in

behavioral synthesis. In: Proceedings of the IEEE/ACM

International Conference on Computer Aided Design, San Jose, CA

(1999) 477–481 657

[23] Ramachandran, L., Gajski, D., Chaiyakul, V.: An algorithm for

array variable clustering. In: European Design and Test Conference,

Paris (1994) 262–266 658

[24] Schmit, H., Thomas, D. E.: Synthesis of application-specific

memory designs. IEEE Transactions on VLSI Systems 5 (1997)

101–111 658

[25] Jha, P. K., Dutt, N.: Library mapping for memories. In:

European Design and Test Conference, Paris, France (1997) 288–

292 658

[26] Wuytack, S., Catthoor, F., Jong, G. D., Man, H. D.:

Minimizing the required memory bandwidth in vlsi system

realizations. IEEE Transactions on VLSI Systems 7 (1999) 433–

441 658

[27] Grun, P., Dutt, N., Nicolau, A.: Apex: Access patter based

memory architecture customization. In: Proceedings International

Symposium on System Synthesis, Montreal, Canada (2001) 25–32

658

[28] Shackleford, B., Yasuda, M., Okushi, E., Koizumi, H.,

Tomiyama, H., Yasuura, H.: Memory-cpu size optimization for

embedded system designs. In: Design Automation Conference.

(1997) 658

[29] Tomiyama, H., Halambi, A., Grun, P., Dutt, N., Nicolau, A.:

Architecture description languages for systems-on-chip design. In:

Proceedings 6th Asia Pacific Conference on Chip Design
Languages, Fukuoka (1999) 109–116 659

[30] Halambi, A., Grun, P., Tomiyama, H., Dutt, N., Nicolau, A.:

Automatic software toolkit generation for embedded systems-on-
chip. In: Proceedings ICVC’99, Korea (1999) 659

[31] Mishra, P., Grun, P., Dutt, N., Nicolau, A.: Processor-memory

co-exploration driven by a memory-aware architecture description

language. In: VLSIDesign, Bangalore (2001) 659

[32] Halambi, A., Grun, P., Ganesh, V., Khare, A., Dutt, N.,

Nicolau, A.: Expression: A language for architecture exploration

through compiler/simulator retargetability. In: Proceedings
DATE’99, Munich, Germany (1999) 659

[33] Gonzales, A., Aliagas, C., Valero, M.: A data cache with

multiple caching strategies tuned to different types of locality. In:

International Conference on Supercomputing, Barcelona, Spain
(1995) 338–347 659

[34] Grun, P., Dutt, N., Nicolau, A.: Access pattern based local

memory customization for low power embedded systems. In:

Design, Automation, and Test in Europe, Munich (2001) 659

BIOGRAPHY

National Conference on Emerging Trends in Information, Digital & Embedded Systems(NC’e-TIDES-2016)

 International Journal of Advanced Trends in Engineering, Science and Technology(IJATEST)Volume.4,Special Issue.1Dec.2016

www.ijatest.org
 100

 Mr M Devendra,

Received his B.Tech Degree in

Electronics and communication

Engineering from Sri

Venkateswara University,

Tirupati, India in 1989,MS

Degree in Electronics and control

from BITS PILANI, India in

1996 and currently pursuing his

Ph D in the area of Embedded

Systems from Rayalaseema

University, Kurnool, AP,

 India.He has 25 years of

teaching Experience. Currently he

is working as Associate Professor in ECE Department,

G Pulla Reddy Engineering College, Kurnool, AP, India.

Dr K E Sreenivasa Murthy,

Received his B.TechDegree in

Electronics and communication

Engineering from Sri

Venkateswara University,

Tirupati, India in 1989.,M Tech

Degree in Electronics and

Instrumentation from Sri

Venkateswara University,

Tirupati, India in 1992, Ph D in

the area of Digital Signal

Processing from Sri Krishnadevaraya University,

Anantapuramu, AP, India in 2003. He has 25 years of

teaching Experience. He worked at various capacities like

Professor, Head of Department and Principal. He published

over 37 papers in National and International Journals. He

guided 3 PhDs and currently guiding 13 PhDs. Currently he

is working as Senior Professor and Head of ECE

Department, G Pullaiah college of Engineering and

Technology, Kurnool, AP, India.

